满分5 > 初中数学试题 >

如图,已知抛物线与x交于A(-1,0)、E(3,0)两点,与y轴交于点B(0,3...

如图,已知抛物线与x交于A(-1,0)、E(3,0)两点,与y轴交于点B(0,3).
(1)求抛物线的解析式;
(2)设抛物线顶点为D,求四边形AEDB的面积;
(3)△AOB与△DBE是否相似?如果相似,请给以证明;如果不相似,请说明理由.

manfen5.com 满分网
(1)易得c=3,故设抛物线解析式为y=ax2+bx+3,根据抛物线所过的三点的坐标,可得方程组,解可得a、b的值,即可得解析式; (2)易由顶点坐标公式得顶点坐标,根据图形间的关系可得四边形ABDE的面积=S△ABO+S梯形BOFD+S△DFE,代入数值可得答案; (3)根据题意,易得∠AOB=∠DBE=90°,且,即可判断出两三角形相似. 【解析】 (1)∵抛物线与y轴交于点(0,3), ∴设抛物线解析式为y=ax2+bx+3(a≠0)(1分) 根据题意,得, 解得 ∴抛物线的解析式为y=-x2+2x+3(5分); (2)如图,设该抛物线对称轴是DF,连接DE、BD.过点B作BG⊥DF于点G. 由顶点坐标公式得顶点坐标为D(1,4)(2分) 设对称轴与x轴的交点为F ∴四边形ABDE的面积=S△ABO+S梯形BOFD+S△DFE =AO•BO+(BO+DF)•OF+EF•DF =×1×3+×(3+4)×1+×2×4 =9; (3)相似,如图, BD=; ∴BE= DE= ∴BD2+BE2=20,DE2=20 即:BD2+BE2=DE2, 所以△BDE是直角三角形 ∴∠AOB=∠DBE=90°,且, ∴△AOB∽△DBE(2分).
复制答案
考点分析:
相关试题推荐
为迎接第四届世界太阳城大会,德州市把主要路段路灯更换为太阳能路灯.已知太阳能路灯售价为5000元/个,目前两个商家有此产品.甲商家用如下方法促销:若购买路灯不超过100个,按原价付款;若一次购买100个以上,且购买的个数每增加一个,其价格减少10元,但太阳能路灯的售价不得低于3500元/个.乙店一律按原价的80%销售.现购买太阳能路灯x个,如果全部在甲商家购买,则所需金额为y1元;如果全部在乙商家购买,则所需金额为y2元.
(1)分别求出y1、y2与x之间的函数关系式;
(2)若市政府投资140万元,最多能购买多少个太阳能路灯?
查看答案
如图,△ABC在方格纸中
(1)请在方格纸上建立平面直角坐标系,使A(2,3),C(6,2),并求出B点坐标;
(2)以原点O为位似中心,相似比为2,在第一象限内将△ABC放大,画出放大后的图形△A′B′C′;
(3)计算△A′B′C′的面积S.

manfen5.com 满分网 查看答案
如图,已知二次函数y=-manfen5.com 满分网+bx+c的图象经过A(2,0)、B(0,-6)两点.
(1)求这个二次函数的解析式;
(2)设该二次函数的对称轴与x轴交于点C,连接BA、BC,求△ABC的面积.

manfen5.com 满分网 查看答案
小明想利用太阳光测量楼高.他带着皮尺来到一栋楼下,发现对面墙上有这栋楼的影子,针对这种情况,他设计了一种测量方案,具体测量情况如下:
如示意图,小明边移动边观察,发现站到点E处时,可以使自己落在墙上的影子与这栋楼落在墙上的影子重叠,且高度恰好相同.此时,测得小明落在墙上的影子高度CD=1.2m,CE=0.8m,CA=30m(点A、E、C在同一直线上).已知小明的身高EF是1.7m,请你帮小明求出楼高AB.(结果精确到0.1m)

manfen5.com 满分网 查看答案
如图,△ABC内接于⊙O,AD是△ABC的边BC上的高,AE是⊙O的直径,连接BE,△ABE与△ADC相似吗?请证明你的结论.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.