满分5 > 初中数学试题 >

如图,已知抛物线y=x2+bx+c与坐标轴交于A、B、C三点,A点的坐标为(-1...

manfen5.com 满分网如图,已知抛物线y=manfen5.com 满分网x2+bx+c与坐标轴交于A、B、C三点,A点的坐标为(-1,0),过点C的直线y=manfen5.com 满分网x-3与x轴交于点Q,点P是线段BC上的一个动点,过P作PH⊥OB于点H.若PB=5t,且0<t<1.
(1)填空:点C的坐标是______,b=______,c=______
(2)求线段QH的长(用含t的式子表示);
(3)依点P的变化,是否存在t的值,使以P、H、Q为顶点的三角形与△COQ相似?若存在,求出所有t的值;若不存在,说明理由.
(1)由于直线y=x-3过C点,因此C点的坐标为(0,-3),那么抛物线的解析式中c=-3,然后将A点的坐标代入抛物线的解析式中即可求出b的值; (2)求QH的长,需知道OQ,OH的长.根据CQ所在直线的解析式即可求出Q的坐标,也就得出了OQ的长,然后求OH的长. 在(1)中可得出抛物线的解析式,那么可求出B的坐标.在直角三角形BPH中,可根据BP=5t以及∠CBO的正弦值(可在直角三角形COB中求出).得出BH的长,根据OB的长即可求出OH的长.然后OH,OQ的差的绝对值就是QH的长; (3)本题要分①当H在Q、B之间.②在H在O,Q之间两种情况进行讨论;根据不同的对应角得出的不同的对应成比例线段来求出t的值. 【解析】 (1)(0,-3),b=-,c=-3; (2)由(1),得y=x2-x-3,它与x轴交于A,B两点,得B(4,0). ∴OB=4, 又∵OC=3, ∴BC=5. 由题意,得△BHP∽△BOC, ∵OC:OB:BC=3:4:5, ∴HP:HB:BP=3:4:5, ∵PB=5t,∴HB=4t,HP=3t. ∴OH=OB-HB=4-4t. 由y=x-3与x轴交于点Q,得Q(4t,0). ∴OQ=4t. ①当H在Q、B之间时,QH=OH-OQ=(4-4t)-4t=4-8t. ②当H在O、Q之间时,QH=OQ-OH=4t-(4-4t)=8t-4. 综合①,②得QH=|4-8t|; (3)存在t的值,使以P、H、Q为顶点的三角形与△COQ相似. ①当H在Q、B之间时,QH=4-8t, 若△QHP∽△COQ,则QH:CO=HP:OQ,得=, ∴t=. 若△PHQ∽△COQ,则PH:CO=HQ:OQ,得=, 即t2+2t-1=0. ∴t1=-1,t2=--1(舍去). ②当H在O、Q之间时,QH=8t-4. 若△QHP∽△COQ,则QH:CO=HP:OQ,得=, ∴t=. 若△PHQ∽△COQ,则PH:CO=HQ:OQ,得=, 即t2-2t+1=0. ∴t1=t2=1(舍去). 综上所述,存在t的值,t1=-1,t2=,t3=.
复制答案
考点分析:
相关试题推荐
如图1,小明将一张矩形纸片沿对角线剪开,得到两张三角形纸片(如图2),量得他们的斜边长为10cm,较小锐角为30°,再将这两张三角纸片摆成如图3的形状,但点B、C、F、D在同一条直线上,且点C与点F重合.(在图3至图6中统一用F表示)
manfen5.com 满分网
小明在对这两张三角形纸片进行如下操作时遇到了三个问题,请你帮助解决.
(1)将图3中的△ABF沿BD向右平移到图4的位置,使点B与点F重合,请你求出平移的距离;
(2)将图3中的△ABF绕点F顺时针方向旋转30°到图5的位置,A1F交DE于点G,请你求出线段FG的长度;
(3)将图3中的△ABF沿直线AF翻折到图6的位置,AB1交DE于点H,请证明:AH﹦DH.
manfen5.com 满分网
查看答案
某商品的进价为每件40元.当售价为每件60元时,每星期可卖出300件,现需降价处理,且经市场调查:每降价1元,每星期可多卖出20件.在确保盈利的前提下,解答下列问题:
(1)若设每件降价x元、每星期售出商品的利润为y元,请写山y与x的函数关系式,并求出自变量x的取值范围;
(2)当降价多少元时,每星期的利润最大?最大利润是多少?
查看答案
如图所示,AB是⊙O直径,OD⊥弦BC于点F,且交⊙O于点E,若∠AEC=∠ODB.
(1)判断直线BD和⊙O的位置关系,并给出证明;
(2)当AB=10,BC=8时,求BD的长.

manfen5.com 满分网 查看答案
有一个可自由转动的转盘,被分成了4个相同的扇形,分别标有数1,2,3,4(如图所示),另有一个不透明的口袋装有分别标有数0,1,3的三个小球(除数不同外,其余都相同),小亮转动一次转盘,停止后指针指向某一扇形,扇形内的数是小亮的幸运数,小红任意摸出一个小球,小球上的数是小红的吉祥数,然后计算这两个数的积.
(1)请你用画树状图或列表的方法,求这两个数的积为0的概率;
(2)小亮与小红做游戏,规则是:若这两个数的积为奇数,小亮赢;否则,小红赢.你认为该游戏公平吗?为什么?如果不公平,请你修改该游戏规则,使游戏公平.

manfen5.com 满分网 查看答案
如图,有一段斜坡BC长为10米,坡角∠CBD=12°,为方便残疾人的轮椅车通行,现准备把坡角降为5度.
manfen5.com 满分网
(1)求坡高CD;
(2)求斜坡新起点A与原起点B的距离(精确到0.1米).
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.