启明公司生产某种产品,每件产品成本是3元,售价是4元,年销售量为10万件.为了获得更好的效益,公司准备拿出一定的资金做广告,根据经验,每年投入的广告费是x(万元)时,产品的年销售量是原销售量的y倍,且
,如果把利润看作是销售总额减去成本费和广告费:
(1)试写出年利润S(万元)与广告费x(万元)的函数关系式,并计算广告费是多少万元时,公司获得的年利润最大,最大年利润是多少万元?
(2)把(1)中的最大利润留出3万元作广告,其余的资金投资新项目,现有6个项目可供选择,各项目每股投资金额和预计年收益如下表:
项目 | A | B | C | D | E | F |
每股(万元) | 5 | 2 | 6 | 4 | 6 | 8 |
收益(万元) | 0.55 | 0.4 | 0.6 | 0.5 | 0.9 | 1 |
如果每个项目只能投一股,且要求所有投资项目的收益总额不得低于1.6万元,问有几种符合要求的投资方式?写出每种投资方式所选的项目.
考点分析:
相关试题推荐
△ABC是锐角三角形,BC=6,面积为12,点P在AB上,点Q在AC上,如图所示,正方形PQRS(RS与A在PQ的异侧)的边长为x,正方形PQRS与△ABC公共部分的面积为y.
(1)当RS落在BC上时,求x;
(2)当RS不落在BC上时,求y与x的函数关系式;
(3)求公共部分面积的最大值.
查看答案
如图,在Rt△ABC中,∠ACB=90°,AB=10,BC=8,点D在BC上运动(不运动至B,C),DE∥AC,交AB于E,设BD=x,△ADE的面积为y.
(1)求y与x的函数关系式及自变量x的取值范围;
(2)x为何值时,△ADE的面积最大?最大面积是多少?
查看答案
试用图象法判断方程x
2+2x=-
的根的个数.
查看答案
如图,已知抛物线y=-x
2+bx+c与x轴的两个交点分别为A(x
1,0),B(x
2,0),且
.
(1)求此抛物线的解析式;
(2)设此抛物线与y轴的交点为C,过点B、C作直线,求此直线的解析式;
(3)求△ABC的面积.
查看答案
利用二次函数的图象求下列一元二次方程的根.
(1)4x
2-8x+1=0;(2)x
2-2x-5=0;(3)2x
2-6x+3=0;(4)x
2-x-1=0.
查看答案