满分5 > 初中数学试题 >

如图,在Rt△ABC中,∠C=90°,AC=3,AB=5.点P从点C出发沿CA以...

如图,在Rt△ABC中,∠C=90°,AC=3,AB=5.点P从点C出发沿CA以每秒1个单位长的速度向点A匀速运动,到达点A后立刻以原来的速度沿AC返回;点Q从点A出发沿AB以每秒1个单位长的速度向点B匀速运动.伴随着P、Q的运动,DE保持垂直平分PQ,且交PQ于点D,交折线QB-BC-CP于点E.点P、Q同时出发,当点Q到达点B时停止运动,点P也随之停止.设点P、Q运动的时间是t秒(t>0).
(1)当t=2时,AP=______,点Q到AC的距离是______
(2)在点P从C向A运动的过程中,求△APQ的面积S与t的函数关系式;(不必写出t的取值范围)
(3)在点E从B向C运动的过程中,四边形QBED能否成为直角梯形?若能,求t的值;若不能,请说明理由;
(4)当DE经过点C时,请直接写出t的值.

manfen5.com 满分网
(1)先求PC,再求AP,然后求AQ,再由三角形相似求Q到AC的距离; (2)作QF⊥AC于点F,先求BC,再用t表示QF,然后得出S的函数解析式; (3)当DE∥QB时,得四边形QBED是直角梯形,由△APQ∽△ABC,由线段的对应比例关系求得t,由PQ∥BC,四边形QBED是直角梯形,△AQP∽△ABC,由线段的对应比例关系求t; (4)①第一种情况点P由C向A运动,DE经过点C、连接QC,作QG⊥BC于点G,由PC2=QC2解得t; ②第二种情况,点P由A向C运动,DE经过点C,由图列出相互关系,求解t. 【解析】 (1)做QF⊥AC, ∵AC=3,点P从点C出发沿CA以每秒1个单位长的速度向点A匀速运动, ∴当t=2时,AP=3-2=1; ∵QF⊥AC,BC⊥AC, ∴QF∥BC, ∴△ACB∽△AFQ, ∴, ∴, 解得:QF=; 故答案为:1,; (2)作QF⊥AC于点F, 如图1,AQ=CP=t, ∴AP=3-t. 由△AQF∽△ABC,BC==4, 得. ∴. ∴S=(3-t)•, 即S=; (3)能. ①当由△APQ∽△ABC,DE∥QB时,如图2. ∵DE⊥PQ, ∴PQ⊥QB,四边形QBED是直角梯形, 此时∠AQP=90°. 由△APQ∽△ABC,得, 即.解得; ②如图3,当PQ∥BC时,DE⊥BC,四边形QBED是直角梯形. 此时∠APQ=90°. 由△AQP∽△ABC,得, 即. 解得, 综上:在点E从B向C运动的过程中,当t=或时,四边形QBED能成为直角梯形; (4)t=或t=. 注:①点P由C向A运动,DE经过点C. 连接QC,作QG⊥BC于点G,如图4. ∵sinB===, ∴QG=(5-t), 同理BG=(5-t), ∴CG=4-(5-t), ∴PC=t,QC2=QG2+CG2=[(5-t)]2+[4-(5-t)]2. ∵CD是PQ的中垂线, ∴PC=QC 则PC2=QC2, 得t2=[(5-t)]2+[4-(5-t)]2, 解得t=; ②点P由A向C运动,DE经过点C,如图5. PC=6-t,可知由PC2=QC2可知, QC2=QG2+CG2=(6-t)2=[(5-t)]2+[4-(5-t)]2, 即t=.
复制答案
考点分析:
相关试题推荐
在△ABC中,a、b、c分别是∠A、∠B、∠C的对边,且c=5manfen5.com 满分网,若关于x的方程(5manfen5.com 满分网+b)x2+2ax+(5manfen5.com 满分网-b)=0有两个相等的实数根,又方程2x2-(10sinA)x+5sinA=0的两实数根的平方和为6,求△ABC的面积.
查看答案
如图,已知E是边长为4cm的正方形ABCD内一点,且DE=3,∠AED=90°,DF⊥DE于D,在射线DF上是否存在这样的M,使得以C、D、M为顶点的三角形与△ADE相似?若存在,请求出满足条件的DM长;若不存在,请说明理由.

manfen5.com 满分网 查看答案
如图所示,已知:在△ABC中,∠A=60°,∠B=45°,AB=8.
求:△ABC的面积.(结果可保留根号)

manfen5.com 满分网 查看答案
某水果批发商场经销一种高档水果,如果每千克盈利10元,每天可售出500千克.经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克.现该商场要保证每天盈利6 000元,同时又要使顾客得到实惠,那么每千克应涨价多少元?
查看答案
如图,在梯形ABCD中,AD∥BC,∠B=∠ACD
(1)求证:△ABC∽△DCA;
(2)若AC=6,BC=9,试求AD.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.