满分5 > 初中数学试题 >

如图,△ABC中,∠BAC=90°,AB=AC=1,点D是BC上一个动点(不与B...

如图,△ABC中,∠BAC=90°,AB=AC=1,点D是BC上一个动点(不与B、C重合),在AC上取E点,使∠ADE=45度.
(1)求证:△ABD∽△DCE;
(2)设BD=x,AE=y,求y关于x的函数关系式;
(3)当:△ADE是等腰三角形时,求AE的长.

manfen5.com 满分网
此题有三问,(1)证明△ABD∽△DCE,已经有∠B=∠C,只需要再找一对角相等就可以了; (2)由(1)证得△ABD∽△DCE,有相似就线段成比例,于是利用(1)的结果可证得(2); (3)当△ABD∽△DCE时,可能是DA=DE,也可能是ED=EA,所以要分两种情况证明结论. (1)证明:∵△ABC中,∠BAC=90°,AB=AC=1, ∴∠ABC=∠ACB=45°. ∵∠ADE=45°, ∴∠BDA+∠CDE=135°. 又∠BDA+∠BAD=135°, ∴∠BAD=∠CDE. ∴△ABD∽△DCE. (2)【解析】 ∵△ABD∽△DCE, ∴; ∵BD=x, ∴CD=BC-BD=-x. ∴, ∴CE=x-x2. ∴AE=AC-CE=1-(x-x2)=x2-x+1. 即y=x2-x+1. (3)【解析】 ∠DAE<∠BAC=90°,∠ADE=45°, ∴当△ADE是等腰三角形时,第一种可能是AD=DE. 又∵△ABD∽△DCE, ∴△ABD≌△DCE. ∴CD=AB=1. ∴BD=-1. ∵BD=CE, ∴AE=AC-CE=2-. 当△ADE是等腰三角形时,第二种可能是ED=EA. ∵∠ADE=45°, ∴此时有∠DEA=90°. 即△ADE为等腰直角三角形. ∴AE=DE=AC=. 当AD=EA时,点D与点C重合,不合题意,所以舍去, 因此AE的长为2-或.
复制答案
考点分析:
相关试题推荐
如图,在直角坐标系中放入一个边长OC为9的矩形纸片ABCO.将纸片翻折后,点B恰好落在x轴上,记为B′,折痕为CE,已知tan∠OB′C=manfen5.com 满分网
(1)求B′点的坐标;
(2)求折痕CE所在直线的解析式.

manfen5.com 满分网 查看答案
如图,学校准备在图书馆后面的场地边建一个面积为60平方米的长方形自行车棚ABCD,一边利用图书馆的后墙,设自行车棚靠墙的一边AD的长是x米(6≤x≤10).
(1)若要利用已有总长为26米的铁围栏作为自行车棚的围栏,则x的值是多少;
(2)若AB=y米,求y的取值范围.

manfen5.com 满分网 查看答案
在一个黑色的布口袋里装着白、红、黑三种颜色的小球,它们除了颜色之外没有其它区别,其中白球2只、红球1只、黑球1只.袋中的球已经搅匀.
(1)随机地从袋中摸出1只球,则摸出白球的概率是多少?
(2)随机地从袋中摸出1只球,放回搅匀再摸出第二个球.请你用画树状图或列表的方法表示所有等可能的结果,并求两次都摸出白球的概率.
查看答案
如图,在某建筑物AC上,挂着“抗震救灾,众志成城”的宣传条幅BC,王亮站在点F处,看条幅顶端B,测得其仰角为30°,他从F处再往条幅方向前行20米到达点E处,看条幅顶端B,测得其仰角为60°,求宣传条幅BC的长.(王亮的身高不计,结果精确到0.1米)
[参考数据:manfen5.com 满分网].

manfen5.com 满分网 查看答案
如图,在△ABC中,DE∥BC.
(1)求证:△ABC∽△ADE;
(2)若DE是△ABC的中位线,△ADE的面积是1,求梯形DBCE的面积.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.