满分5 > 初中数学试题 >

已知抛物线y=ax2+bx+c与x轴交于A、B两点,与y轴交于点C,其中点B在x...

已知抛物线y=ax2+bx+c与x轴交于A、B两点,与y轴交于点C,其中点B在x轴的正半轴上,点C在y轴的正半轴上,线段OB、OC的长(OB<OC)是方程x2-10x+16=0的两个根,且抛物线的对称轴是直线x=-2.
(1)求A、B、C三点的坐标;
(2)求此抛物线的表达式;
(3)连接AC、BC,若点E是线段AB上的一个动点(与点A、点B不重合),过点E作EF∥AC交BC于点F,连接CE,设AE的长为m,△CEF的面积为S,求S与m之间的函数关系式,并写出自变量m的取值范围;
(4)在(3)的基础上试说明S是否存在最大值?若存在,请求出S的最大值,并求出此时点E的坐标,判断此时△BCE的形状;若不存在,请说明理由.

manfen5.com 满分网
(1)先解一元二次方程,得到线段OB、OC的长,也就得到了点B、C两点坐标,根据抛物线的对称性可得点A坐标; (2)把A、B、C三点代入二次函数解析式就能求得二次函数解析式; (3)易得S△EFF=S△BCE-S△BFE,只需利用平行得到三角形相似,求得EF长,进而利用相等角的正弦值求得△BEF中BE边上的高; (4)利用二次函数求出最值,进而求得点E坐标.OC垂直平分BE,那么EC=BC,所求的三角形是等腰三角形. 【解析】 (1)解方程x2-10x+16=0得x1=2,x2=8 (1分) ∵点B在x轴的正半轴上,点C在y轴的正半轴上,且OB<OC ∴点B的坐标为(2,0),点C的坐标为(0,8) 又∵抛物线y=ax2+bx+c的对称轴是直线x=-2 ∴由抛物线的对称性可得点A的坐标为(-6,0)(2分) (2)∵点C(0,8)在抛物线y=ax2+bx+c的图象上 ∴c=8,将A(-6,0)、B(2,0)代入表达式, 得: 解得 ∴所求抛物线的表达式为y=-x2-x+8(5分) (3)依题意,AE=m,则BE=8-m, ∵OA=6,OC=8, ∴AC=10 ∵EF∥AC ∴△BEF∽△BAC ∴=,即= ∴EF=(6分) 过点F作FG⊥AB,垂足为G, 则sin∠FEG=sin∠CAB= ∴= ∴FG=•=8-m ∴S=S△BCE-S△BFE =(8-m)×8-(8-m)(8-m) =(8-m)(8-8+m) =(8-m)m =-m2+4m(8分) 自变量m的取值范围是0<m<8 (9分) (4)存在. 理由:∵S=-m2+4m=-(m-4)2+8且-<0, ∴当m=4时,S有最大值,S最大值=8 (10分) ∵m=4, ∴点E的坐标为(-2,0) ∴△BCE为等腰三角形.
复制答案
考点分析:
相关试题推荐
如图,在直角梯形ABCD中,AD∥BC,∠ABC=90°,AB=12cm,AD=8cm,BC=22cm,AB为⊙O的直径,动点P从点A开始沿AD边向点D以1cm/s的速度运动,动点Q从点C开始沿CB边向点B以2cm/s的速度运动.P、Q分别从点A、C同时出发,当其中一个动点到达端点时,另一个动点也随之停止运动,设运动时间为t(s).
(1)当t为何值时,四边形PQCD为平行四边形?
(2)当t为何值时,PQ与⊙O相切?

manfen5.com 满分网 查看答案
已知:如图,⊙O的直径AD=2,manfen5.com 满分网,∠BAE=90度.
(1)求△CAD的面积;
(2)如果在这个圆形区域中,随机确定一个点P,那么点P落在四边形ABCD区域的概率是多少?

manfen5.com 满分网 查看答案
在旧城改造中,要拆除一烟囱AB(如图所示),事先应在地面上划定以B为圆心,以AB为半径的圆形危险区,现在从距离B点21米远的建筑物CD顶端C测得A点的仰角为45°,B点的俯角为30°.问离B点35米远的文物是否在危险区内?

manfen5.com 满分网 查看答案
某风景区对5个旅游景点的门票价格进行了调整,根据统计,调价前各景点的旅客人数基本不变,有关数据如下表所示.
景点ABCDE
原价(元)2020253050
现价(元)1010254060
平均每日人数500500100020001000
(1)该风景区称调整前后这5个景点门票的平均收费不变,平均收入也持平,问风景区是怎样计算的.
(2)旅客认为调整收费后景区的平均日收入较调价前实际增加了近13%,问旅客是怎么计算的.
(3)你认为谁的说法更切合实际情况.
查看答案
已知x1,x2是一元二次方程x2-x+2m-2=0的两个实根.
(1)求m的取值范围;
(2)若m满足2x1+x2=m+1,求m的值.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.