如图,点B坐标为(7,9),⊙B的半径为3,AB⊥y轴,垂足为A,点P从A点出发沿射线AB运动,速度为每秒一个单位,设运动的时间t(s):
(1)当点P运动到圆上时,求t值,并直接写出此时P点坐标;
(2)若P运动12s时,判断直线OP与⊙B的位置关系,并说明你的理由;
(3)点P从A点出发沿射线AB运动的过程中,请探究直线OP与⊙B有哪几种位置关系,并直接写出相应的运动时间t的取值范围.(这一小题不要求写出解题过程)
考点分析:
相关试题推荐
某商场将进价为1800元的电冰箱以每台2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降价50元,平均每天就能多售出4台.
(1)设每台冰箱降价x元,商场每天销售这种冰箱的利润为y元,求y与x之间的函数关系式(不要求写自变量的取值范围).
(2)商场想在这种冰箱的销售中每天盈利8000元,同时又要使顾客得到实惠,每台冰箱应降价多少元?
(3)每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高?最高利润是多少元?
查看答案
如图,⊙O的直径AB=4,C为圆周上一点,AC=2,过点C作⊙O的切线l,过点B作l的垂线BD,垂足为D,BD与⊙O交于点E.
求证:四边形OBEC是菱形.
查看答案
如图,在▱ABCD中,AE⊥BD,CF⊥BD,垂足分别为E、F,四边形AECF是平行四边形吗?为什么?
查看答案
如图,在正方形网格图中建立一直角坐标系,一条圆弧经过网格点A,B,C请在网格图中进行下列操作:
(1)请在图中确定该圆弧所在圆的圆心D的位置,D点坐标为______;
(2)连接AD,CD,则⊙D的半径为______(结果保留根号),扇形DAC的圆心角度数为______;
(3)若扇形DAC是某一个圆锥的侧面展开图,则该圆锥的底面半径为______(结果保留根号).
查看答案