阅读材料:
如图1,过△ABC的三个顶点分别作出与水平线垂直的三条直线,外侧两条直线之间的距离叫△ABC的“水平宽”(a),中间的这条直线在△ABC内部线段的长度叫△ABC的“铅垂高(h)”.我们可得出一种计算三角形面积的新方法:
S
△ABC=
ah,即三角形面积等于水平宽与铅垂高乘积的一半.
解答下列问题:
如图2,抛物线顶点坐标为点C(1,4),交x轴于点A(3,0),交y轴于点B.
(1)求抛物线和直线AB的解析式;
(2)点P是抛物线(在第一象限内)上的一个动点,连接PA,PB,当P点运动到顶点C时,求△CAB的铅垂高CD及S
△CAB;
(3)是否存在一点P,使S
△PAB=
S
△CAB?若存在,求出P点的坐标;若不存在,请说明理由.
查看答案
如图,点B坐标为(7,9),⊙B的半径为3,AB⊥y轴,垂足为A,点P从A点出发沿射线AB运动,速度为每秒一个单位,设运动的时间t(s):
(1)当点P运动到圆上时,求t值,并直接写出此时P点坐标;
(2)若P运动12s时,判断直线OP与⊙B的位置关系,并说明你的理由;
(3)点P从A点出发沿射线AB运动的过程中,请探究直线OP与⊙B有哪几种位置关系,并直接写出相应的运动时间t的取值范围.(这一小题不要求写出解题过程)
查看答案