满分5 > 初中数学试题 >

如图①,四边形ABCD是正方形,点G是BC上任意一点,DE⊥AG于点E,BF⊥A...

如图①,四边形ABCD是正方形,点G是BC上任意一点,DE⊥AG于点E,BF⊥AG于点F.
(1)求证:DE-BF=EF;
(2)当点G为BC边中点时,试探究线段EF与GF之间的数量关系,并说明理由;
(3)若点G为CB延长线上一点,其余条件不变.请你在图②中画出图形,写出此时DE、BF、EF之间的数量关系(不需要证明).
manfen5.com 满分网
(1)本题的关键是求三角形ADE和ABF全等,以此来得出DE=AF=AE+EF=BE+EF,这两个三角形中已知的条件有AD=BA,一组直角,关键是再找出一组对应角相等,可通过证明∠DAF和∠ABF来实现.(通过平行和等角的余角相等来证得) (2)可通过证明三角形ABG、ABF、BFG相似来得出AB,BG;AF,BF;BF,BG之间的比例关系,根据AB=2BG,来得出AF,BF,BF,FG之间的比例关系,然后根据(1)中得出的结果来求BF,FG的大小关系. (3)方法同(1)还是正三角形ADE和ABF全等,得出DE=AF,BF=AE,只不过本题的结论是DE+BF=EF. (1)证明:∵四边形ABCD是正方形,BF⊥AG,DE⊥AG, ∴DA=AB,∠BAF+∠DAE=∠DAE+∠ADE=90°, ∴∠BAF=∠ADE, ∴△ABF≌△DAE, ∴BF=AE,AF=DE, ∴DE-BF=AF-AE=EF. (2)【解析】 EF=2FG, 理由如下: ∵AB⊥BC,BF⊥AG,AB=2BG, ∵∠BAG=∠GBF, ∴△ABG∽△BFG, 同理可得,△AFB∽△BFG∽△ABG, ∴===2, ∴AF=2BF,BF=2FG, 由(1)知,AE=BF, ∴EF=AF-AE=AF-BF=BF=2FG. (3)【解析】 如图,DE+BF=EF.
复制答案
考点分析:
相关试题推荐
如图,AB是⊙O的直径,弦DE垂直平分半径OA,C为垂足,弦DF与半径OB相交于点P,连接EF、EO,若DE=2manfen5.com 满分网,∠DPA=45°.
(1)求⊙O的半径;
(2)求图中阴影部分的面积.

manfen5.com 满分网 查看答案
如图所示,点A坐标为(0,3),⊙A半径为1,点B在x轴上.
(1)若点B坐标为(4,0),⊙B半径为3,试判断⊙A与⊙B位置关系;
(2)若⊙B过M(-2,0)且与⊙A相切,求B点坐标.

manfen5.com 满分网 查看答案
美国NBA职业篮球赛的火箭队和湖人队在本赛季已进行了5场比寒.将比赛成绩进行统计后,绘制成统计图(如图1).请完成以下四个问题:
manfen5.com 满分网
(1)在图2中画出折线表示两队这5场比赛成绩的变化情况;
(2)已知火箭队五场比赛的平均得分manfen5.com 满分网=90,请你计算湖人队五场比赛成绩的平均得分manfen5.com 满分网
(3)就这5场比赛,分别计算两队成绩的极差;
(4)根据上述统计情况,试从平均得分、折线的走势、获胜场次和极差四个方面分别进行简要分析,请预测下一场比赛哪个队更能取得好成绩?
查看答案
如图,四边形ABCD,E、F、G、H分别是AB、BC、CD、DA的中点.
(1)请判断四边形EFGH的形状?并说明为什么;
(2)若使四边形EFGH为正方形,那么四边形ABCD的对角线应具有怎样的性质?

manfen5.com 满分网 查看答案
对于平面图形A,如果存在一个圆,使图形A上的任意一点到圆心的距离不大于这个圆的半径,那么称图形A被这个圆所覆盖.例如,图中的三角形被一个圆所覆盖.回答问题:
(1)边长为1cm的正方形被一个半径为r的圆所覆盖,r的最小值是多少?
(2)边长为1cm的正三角形被一个半径为r的圆所覆盖,r的最小值是多少?
(3)半径为1cm的圆被边长为a的正方形所覆盖,a的最小值是多少?
(4)半径为1cm的圆被边长为a的正三角形所覆盖,a的最小值是多少?

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.