满分5 > 初中数学试题 >

如图,已知正方形ABCD的边长为4cm,动点P从点B出发,以2cm/s的速度、沿...

如图,已知正方形ABCD的边长为4cm,动点P从点B出发,以2cm/s的速度、沿B→C→D方向,向点D运动;动点Q从点A出发,以1cm/s的速度、沿A→B方向,向点B运动.若P、Q两点同时出发,运动时间为t秒.
(1)连接PD、PQ、DQ,设△PQD的面积为S,试求S与t之间的函数关系式;
(2)当点P在BC上运动时,是否存在这样的t,使得△PQD是等腰三角形?若存在,请求出符合条件的t的值;若不存在,请说明理由;
(3)以点P为圆心,作⊙P,使得⊙P与对角线BD相切.问:当点P在CD上运动时,是否存在这样的t,使得⊙P恰好经过正方形ABCD的某一边的中点若存在,请求出符合条件的t的值;若不存在,请说明理由.
manfen5.com 满分网
(1)可根据三角形PQD的面积=梯形ABPD的面积-三角形AQD的面积-三角形BPQ的面积来求解,根据P,Q的速度,可以表示出AQ、BQ、BP,那么就能表示出两直角三角形的直角边以及梯形的两底和高,可根据各自的面积计算公式得出S、t之间的函数关系式. (2)要分三种情况进行讨论: 当PD=QD时,根据斜边直角边定理,我们可得出三角形AQD和CPD全等,那么可得出CP=AQ,可用时间t分别表示出AQ、CP的长,然后可根据两者的等量关系求出t的值. 当PD=PQ时,可在直角三角形BPQ和PDC中,根据勾股定理,用BQ、BP表示出PQ,用CP、CD表示出PD;BQ、BP、PC都可以用t来表示,由此可得出关于t的方程,解方程即可得出t的值. 当QD=PQ时,方法同上. (3)应当考虑两种情况: ①圆心P经过BC的中点,如果设圆与BD相切于M,BC的中点是E,那么PM=PE,可用时间t表示出CP的长,也就能表示出DP的长,那么可以根据勾股定理在直角三角形CEP中表示出PE2的长,也就表示出了PM2的长,然后根据∠MDP的正弦值表示出DP,PM的关系,由此可得出关于t的方程,进而求出t的值. ②圆心P经过CD的中点,如过CD的中点是E,那么PM=PE,在直角三角形DMP中,DP=2-半径的长,PM=半径的长,因此可根据∠MDP的正弦函数求出半径的长,然后用t表示出CP,即可求出t的值. 【解析】 (1)当0≤t≤2时,即点P在BC上时, S=S正方形ABCD-S△ADQ-S△BPQ-S△PCD=16-•4•t-•2t•(4-t)-•(4-2t)•4=t2-2t+8, 当2<t≤4时,即点P在CD上时,DP=8-2t, S=•(8-2t)•4=16-4t. (2)①若PD=QD,则Rt△DCP≌Rt△DAQ(HL). ∴CP=AQ.即t=4-2t,解得t=. ②若PD=PQ,则PD2=PQ2,即42+(4-2t)2=(4-t)2+(2t)2. 解得t=-4±4,其中t=-4-4<0不合题意,舍去,∴t=-4+4. ③若QD=PQ,则QD2=PQ2,即16+t2=(4-t)2+(2t)2,解得t=0或t=2, ∴t=或t=-4+4或t=0或t=2时,△PQD是等腰三角形. (3)当P在CD上运动时,若⊙P经过BC的中点E,设⊙P切BD于M. 则CP=2t-4,PM2=PE2=(2t-4)2+22. 而在Rt△PMD中,由于∠PDM=45°,所以DP=PM,即DP2=2PM2. ∴(8-2t)2=2[(2t-4)2+22]. 解得t=±,负值舍去, ∴t=, 若⊙P经过CD的中点,⊙P的半径r=2(-1), 故t=2+, 故当点P在CD上运动时,若t=或2+,则⊙P恰好经过正方形ABCD的某一边的中点.
复制答案
考点分析:
相关试题推荐
有一种葡萄,从树上摘下后不保鲜最多只能存放一周,若放在冷藏室,可延长保鲜时间,但每天仍有一定数量的葡萄变质.假设保鲜期内的个体重量基本保持不变,现有一个体户,按市场价收购了这种葡萄200kg,放在冷藏室内,此时市场价格为每千克2元,据测算,此后每千克鲜葡萄的价格每天可上涨0.2元,但是存放一天需各种费用20元,日平均每天还有1kg葡萄变质丢弃.
(1)设x天后每千克鲜葡萄的市场价为P元,P=______元.
(2)若存放x天后将鲜葡萄一次性出售,设鲜葡萄的销售总金额为y元,写出y关于x的函数关系式.
(3)该个体户将这批葡萄存放多少天后出售,可获最大利润Q?最大利润Q是多少?(本题不要求写出自变量的取值范围)
查看答案
已知:如图,在Rt△ABC中,∠C=90°,AC=12,BC=9,D是AB上一点,以BD为直径的⊙O切AC于E,求⊙O的半径.

manfen5.com 满分网 查看答案
如图,∠AOB=90°,点C、D分别在OA、OB上.
(1)尺规作图(不写作法,保留作图痕迹):作∠AOB的平分线OP;作过C、O、D三点的⊙E,与OP相交于F;连接CF、DF.
(2)在所画图中,△CDF是什么形状?并证明你的猜想.

manfen5.com 满分网 查看答案
美国NBA职业篮球赛的火箭队和湖人队在本赛季已进行了5场比寒.将比赛成绩进行统计后,绘制成统计图(如图1).请完成以下四个问题:
manfen5.com 满分网manfen5.com 满分网
(1)在图2中画出折线表示两队这5场比赛成绩的变化情况;
(2)根据上述统计情况,试从平均得分、折线的走势、获胜场次和极差四个方面分别进行简要分析,请预测下一场比赛哪个队更能取得好成绩?
查看答案
如图,在矩形ABCD中,F是BC边上一点,AF的延长线交DC的延长线于G,DE⊥AG于E,且DE=DC.求证:AE=BF.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.