满分5 > 初中数学试题 >

如图,AB是⊙O的直径,弦BC=2cm,∠ABC=60度. (1)求⊙O的直径;...

如图,AB是⊙O的直径,弦BC=2cm,∠ABC=60度.
manfen5.com 满分网
(1)求⊙O的直径;
(2)若D是AB延长线上一点,连接CD,当BD长为多少时,CD与⊙O相切;
(3)若动点E以2cm/s的速度从A点出发沿着AB方向运动,同时动点F以1cm/s的速度从B点出发沿BC方向运动,设运动时间为t(s)(0<t<2),连接EF,当t为何值时,△BEF为直角三角形.
(1)根据已知条件知:∠BAC=30°,已知AB的长,根据直角三角形中,30°锐角所对的直角边等于斜边的一半可得AB的长,即⊙O的直径; (2)根据切线的性质知:OC⊥CD,根据OC的长和∠COD的度数可将OD的长求出,进而可将BD的长求出; (3)应分两种情况进行讨论,当EF⊥BC时,△BEF为直角三角形,根据△BEF∽△BAC,可将时间t求出; 当EF⊥BA时,△BEF为直角三角形,根据△BEF∽△BCA,可将时间t求出. 【解析】 (1)∵AB是⊙O的直径, ∴∠ACB=90°; ∵∠ABC=60°, ∴∠BAC=180°-∠ACB-∠ABC=30°; ∴AB=2BC=4cm,即⊙O的直径为4cm. (2)如图(1)CD切⊙O于点C,连接OC,则OC=OB=×AB=2cm. ∴CD⊥CO;∴∠OCD=90°; ∵∠BAC=30°, ∴∠COD=2∠BAC=60°; ∴∠D=180°-∠COD-∠OCD=30°; ∴OD=2OC=4cm; ∴BD=OD-OB=4-2=2(cm); ∴当BD长为2cm,CD与⊙O相切. (3)根据题意得: BE=(4-2t)cm,BF=tcm; 如图(2)当EF⊥BC时,△BEF为直角三角形,此时△BEF∽△BAC; ∴BE:BA=BF:BC; 即:(4-2t):4=t:2; 解得:t=1; 如图(3)当EF⊥BA时,△BEF为直角三角形,此时△BEF∽△BCA; ∴BE:BC=BF:BA; 即:(4-2t):2=t:4; 解得:t=1.6; ∴当t=1s或t=1.6s时,△BEF为直角三角形.
复制答案
考点分析:
相关试题推荐
随着海峡两岸交流日益增强,通过“零关税”进入我市的一种台湾水果,其进货成本是每吨0.5万元,这种水果市场上的销售量y(吨)是每吨的销售价x(万元)的一次函数,且x=0.6时,y=2.4;x=1时,y=2.
(1)求出销售量y(吨)与每吨的销售价x(万元)之间的函数关系式;
(2)若销售利润为w(万元),请写出w与x之间的函数关系式,并求出销售价为每吨2万元时的销售利润.
查看答案
如图1的矩形包书纸示意图中,虚线是折痕,阴影是裁剪掉的部分,四角均为大小相同的正方形,正方形的边长为折叠进去的宽度.
(1)如图2,《思维游戏》这本书的长为21cm,宽为15cm,厚为1cm,现有一张面积为875cm2的矩形纸包好了这本书,展开后如图1所示.求折叠进去的宽度;
(2)若有一张长为60cm,宽为50cm的矩形包书纸,包2本如图2中的书,书的边缘与包书纸的边缘平行,裁剪包好展开后均如图1所示.问折叠进去的宽度最大是多少?

manfen5.com 满分网 查看答案
己知,抛物线y=-x2十bx+c的图象经过点(-2,-5)(0,3).
(1)求抛物线的解析式;
(2)在给出的坐标系中画出该抛物线的草图;观察图象,写出x在什么范围内取值时,函数值y>0.
查看答案
如图,Rt△ABC中,∠ACB=90°,AC=4,BC=2,以AB上的一点O为圆心分别与均AC,BC相切于点D、E.
①求⊙O的半径;
②求sin∠BOC的值.

manfen5.com 满分网 查看答案
如图,在梯形ABCD中,AD∥BC,AB=AD=DC,∠B=60°.
(1)求证:AB⊥AC;
(2)若DC=6,求梯形ABCD的面积.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.