满分5 > 初中数学试题 >

如图,△ABC中,∠ACB=90°,AC=BC=1,将△ABC绕点C逆时针旋转角...

如图,△ABC中,∠ACB=90°,AC=BC=1,将△ABC绕点C逆时针旋转角α.(0°<α<90°)得到△A1B1C1,连接BB1.设CB1交AB于D,AlB1分别交AB、AC于E、F.
(1)在图中不再添加其它任何线段的情况下,请你找出一对全等的三角形,并加以证明(△ABC与△A1B1C1全等除外);
(2)当△BB1D是等腰三角形时,求α;
(3)当α=60°时,求BD的长.

manfen5.com 满分网
(1)依据全等三角形的判定,可找出全等的三角形有:△CBD≌△CA1F或△AEF≌△B1ED或△ACD≌△B1CF等.由旋转的意义可证∠A1CF=∠BCD,A1C=BC,∠A1=∠CBD=45°,所以△CBD≌△CA1F. (2)当△BBD是等腰三角形时,要分别讨论B1B=B1D、BB1=BD、B1D=DB三种情况,第一,三种情况不成立,只有第二种情况成立,求得α=30°. (3)作DG⊥BC于G,在直角三角形CDG和直角三角形DGB中,由三角函数即可求得BD的长. 【解析】 (1)全等的三角形有:△CBD≌△CA1F或△AEF≌△B1ED或△ACD≌△B1CF等; 以证△CBD≌△CA1F为例: 证明:∵∠ACB1+∠A1CF=∠ACB1+∠BCD=90° ∴∠A1CF=∠BCD ∵A1C=BC ∴∠A1=∠CBD=45° ∴△CBD≌△CA1F; (2)在△CBB1中 ∵CB=CB1 ∴∠CBB1=∠CB1B=(180°-α) 又△ABC是等腰直角三角形 ∴∠ABC=45° ①若B1B=B1D,则∠B1DB=∠B1BD ∵∠B1DB=45°+α ∠B1BD=∠CBB1-45°=(180°-α)-45°=45°- ∴45°+α=45°-, ∴α=0°(舍去); ②∵∠BB1C=∠B1BC>∠B1BD,∴BD>B1D,即BD≠B1D; ③若BB1=BD,则∠BDB1=∠BB1D,即45°+α=(180°-α),α=30° 由①②③可知,当△BB1D为等腰三角形时,α=30°; (3)作DG⊥BC于G,设CG=x. 在Rt△CDG中,∠DCG=α=60°, ∴DG=xtan60°=x Rt△DGB中,∠DBG=45°, ∴BG=GD=x, ∵AC=BC=1, ∴x+x=1 ∴x=, ∴DB=BG=x=×=.
复制答案
考点分析:
相关试题推荐
甲、乙两人在相同的条件下各射靶5次,每次射靶的成绩情况如图所示.
manfen5.com 满分网
(1)请你根据图中的数据填写下表:
 姓名平均数(环)  众数(环) 方差
 甲   
 乙   2.8
(2)从平均数和方差相结合看,分析谁的成绩好些.
查看答案
解方程:
①x2=x+56;
②x2+8x+9=0;
③(3x-4)2=(3-4x)2
查看答案
计算:
manfen5.com 满分网
manfen5.com 满分网
manfen5.com 满分网
manfen5.com 满分网
manfen5.com 满分网manfen5.com 满分网•(-4manfen5.com 满分网)÷manfen5.com 满分网manfen5.com 满分网
查看答案
如图,菱形ABCD的两条对角线分别长6和8,点P是对角线AC上的一个动点,点M、N分别是边AB、BC的中点,则PM+PN的最小值是   
manfen5.com 满分网 查看答案
先阅读理解,再回答问题:
因为manfen5.com 满分网,所以manfen5.com 满分网的整数部分为1;
因为manfen5.com 满分网,所以manfen5.com 满分网的整数部分为2;
因为manfen5.com 满分网,所以manfen5.com 满分网的整数部分为3;
依此类推,我们不难发现manfen5.com 满分网为正整数)的整数部分为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.