满分5 > 初中数学试题 >

如图,在Rt△ABC中,∠BAC=90°,AB=AC=2,点D在BC上运动(不能...

如图,在Rt△ABC中,∠BAC=90°,AB=AC=2,点D在BC上运动(不能到达B,C点),过D作∠ADE=45°,DE交AC于E.
(1)求证:△ABD∽△DCE;
(2)设BD=x,AE=y,求y关于x的函数表达式;
(3)当△ADE是等腰三角形时,求AE的长.

manfen5.com 满分网
(1)求出三角形的两个角相等便可证明两三角形相似; (2)利用△ABD∽△DCE,BD=x,AE=y代入比例式,便可求出y关于x的函数表达式; (3)△ADE是等腰三角形,分三种情况讨论: ①若AE=DE,知要求DE⊥AC,∵AD=,∴AE=DE=1; ②若AD=DE,由(1)条件知△ABD∽△DCE,BD=x=,BD=CE,AE=2-CE=; ③若AD=AE,则∠ADE=∠AED=45°,从而∠DAE=90°,即D点与B点重合,这与已知条件“D点不能到B,C点矛盾”,因此AD≠AE. (1)证明:由图知和已知条件: ∵∠ADB=∠DAC+∠C=∠DAC+45°, ∴∠DEC=∠DAC+∠ADE=∠DAC+45°, ∴∠ADB=∠DEC; 又∵∠B=∠C, ∴△ABD∽△DCE. (2)【解析】 由△ABD∽△DCE, ∴, ∵AB=2,BD=x,DC=, CE=2-y代入得4-2y=⇒. (3)【解析】 ①若AE=DE,则DE⊥AC, ∵AD=, ∴AE=DE=1, ②若AD=DE,由(1)条件知△ABD∽△DCE, ∴△ABD≌△DCE(有一边对应相等的两相似三角形全等), ∴AB=DC, 2=, x=, BD=CE, AE=2-CE=, ③若AD=AE, 则∠ADE=∠AED=45°,∠DAE=90°,点D在B处没走, 则AD≠AE.
复制答案
考点分析:
相关试题推荐
已知:如图,在Rt△ABC中,∠C=90°,有一内接正方形DEFC,连接AF交DE于G,若AC=15,BC=10.
(1)求正方形DEFC的边长;(2)求EG的长.

manfen5.com 满分网 查看答案
如图所示,在小山顶上有一电视发射塔,在塔顶B处测地面上一点A的俯角α=60°,在塔底C处测得A点的俯角β=45°,已知塔高BC=72米,求山高CD.(答案保留根号)

manfen5.com 满分网 查看答案
在长24m,宽20m的矩形花园的中央建一个面积为320㎡的矩形花坛,使建成后四周的走道宽度相等,求走道的宽度.

manfen5.com 满分网 查看答案
已知:如图,四边形ABCD是菱形,过AB的中点E作AC的垂线EF,交AD于点M,交CD的延长线于点F.
(1)求证:AM=DM;
(2)若DF=2,求菱形ABCD的周长.

manfen5.com 满分网 查看答案
甲、乙两个袋里放着一些质地均匀,大小相同的小球,具体的颜色和数量如下表:把袋里的球搅匀.
(1)分别求出:①从甲袋中随机取出一个球是红球的概率;②从乙袋中随机取出一个球是红球的概率;
(2)求从每个袋中随机取一个球,取出的两个都是红球的概率.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.