满分5 > 初中数学试题 >

如图,直线y=-x+3与x轴,y轴分别相交于点B,点C,经过B,C两点的抛物线y...

如图,直线y=-x+3与x轴,y轴分别相交于点B,点C,经过B,C两点的抛物线y=ax2+bx+c与x轴的另一交点为A,顶点为P,且对称轴是直线x=2.
(1)求A点的坐标;
(2)求该抛物线的函数表达式;
(3)连接AC.请问在x轴上是否存在点Q,使得以点P,B,Q为顶点的三角形与△ABC相似?若存在,请求出点Q的坐标;若不存在,请说明理由.

manfen5.com 满分网
(1)根据二次函数的对称性,已知对称轴的解析式以及B点的坐标,即可求出A的坐标 (2)已知了抛物线过A、B、C三点,而且三点的坐标都已得出,可用待定系数法来求函数的解析式. (3)本题要先根据抛物线的解析式求出顶点P的坐标,然后求出BP的长,进而分情况进行讨论: ①当∠PQB=∠CAB,即BQ:AB=PB:BC时,根据A、B的坐标可求出AB的长,根据B、C的坐标可求出BC的长,已经求出了PB的长度,那么可根据比例关系式得出BQ的长,即可得出Q的坐标. ②当∠QPB=∠CAB,即BQ:BC=BP:AB,可参照①的方法求出Q的坐标. ③当∠QBP=∠CAB,根据P点和A点的坐标即可得出∠CAO与∠QBP是不相等的,因此∠CAB与∠QBP也不会相等,因此此种情况是不成立的. 综上所述即可得出符合条件的Q的坐标. 【解析】 (1)∵直线y=-x+3与x轴相交于点B, ∴当y=0时,x=3, ∴点B的坐标为(3,0). 又∵抛物线过x轴上的A,B两点,且对称轴为x=2, 根据抛物线的对称性, ∴点A的坐标为(1,0). (2)∵y=-x+3过点C,易知C(0,3), ∴c=3. 又∵抛物线y=ax2+bx+c过点A(1,0),B(3,0), ∴ 解,得 ∴y=x2-4x+3. (3)连接PB,由y=x2-4x+3=(x-2)2-1,得P(2,-1), 设抛物线的对称轴交x轴于点M, ∵在Rt△PBM中,PM=MB=1, ∴∠PBM=45°,PB=. 由点B(3,0),C(0,3)易得OB=OC=3,在等腰直角三角形OBC中,∠ABC=45°, 由勾股定理,得BC=3. 假设在x轴上存在点Q,使得以点P,B,Q为顶点的三角形与△ABC相似. ①当,∠PBQ=∠ABC=45°时,△PBQ∽△ABC. 即, ∴BQ=3, 又∵BO=3, ∴点Q与点O重合, ∴Q1的坐标是(0,0). ②当,∠QBP=∠ABC=45°时,△QBP∽△ABC. 即, ∴QB=. ∵OB=3, ∴OQ=OB-QB=3-, ∴Q2的坐标是(,0). ∵∠PBx=180°-45°=135°,∠BAC<135°, ∴∠PBx≠∠BAC. ∴点Q不可能在B点右侧的x轴上 综上所述,在x轴上存在两点Q1(0,0),Q2(,0), 能使得以点P,B,Q为顶点的三角形与△ABC相似.
复制答案
考点分析:
相关试题推荐
如图,已知AB是⊙O的直径,点C是⊙O上一点,连接BC,AC,过点C作直线CD⊥AB于点D,点E是AB上一点,直线CE交⊙O于点F,连接BF,与直线CD交于点G.
(1)求证:BC2=BG•BF;
(2)若CB=manfen5.com 满分网,FG=1cm,求FB的长.

manfen5.com 满分网 查看答案
如图,在△ABC中,AC=8厘米,BC=16厘米,点P从点A出发,沿着AC边向点C以1cm/s的速度运动,点Q从点C出发,沿着CB边向点B以2cm/s的速度运动,如果P与Q同时出发,经过几秒△PQC和△ABC相似?

manfen5.com 满分网 查看答案
如图,已知扇形PAB的圆心角为120°,面积为300лcm2
(1)求扇形的弧长;
(2)若把此扇形卷成一个圆锥,则这个圆锥的底面半径是多少?

manfen5.com 满分网 查看答案
如图,在平面直角坐标系中,反比例函数manfen5.com 满分网的图象经过点A(1,2),B(m,n)(m>1),过点B作y轴的垂线,垂足为C.
(1)求该反比例函数解析式;
(2)当△ABC面积为2时,求点B的坐标.

manfen5.com 满分网 查看答案
如图,已知AB是⊙O的直径,点C,D在⊙O上,且AB=5,BC=3.
(1)求sin∠BAC的值;
(2)如果OE⊥AC,垂足为E,求OE的长;
(3)求tan∠ADC的值.(结果保留根号)

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.