满分5 > 初中数学试题 >

已知:如图所示,BC为圆O的直径,A、F是半圆上异于B、C的一点,D是BC上的一...

已知:如图所示,BC为圆O的直径,A、F是半圆上异于B、C的一点,D是BC上的一点,BF交AH于点E,A是弧BF的中点,AH⊥BC.
(1)求证:AE=BE;
(2)如果BE•EF=32,AD=6,求DE、BD的长.

manfen5.com 满分网
(1)求AE=BE,可证它们的所对的角相等;连接AB、通过证弧AF、弧AB、弧BH都相等,来得到∠BAE=∠EBA,从而证得AE=BE的结论. (2)已知了AD的长即可得出HD的长,可用DE表示出AE、EH,然后由相交弦定理可求出DE的值,进而可在Rt△BDE中,由勾股定理求出BD的长. 【解析】 (1)连接AB; ∵BC是直径,且BC⊥AH, ∴; ∵A是的中点, ∴==; ∴∠BAE=∠ABE; ∴AE=BE; (2)易知DH=AD=6; ∴AE=6-DE,EH=6+DE; 由相交弦定理,得:AE•EH=BE•EF,即: (6-DE)(6+DE)=32,解得DE=2; Rt△BDE中,BE=AE=AD-DE=4,DE=2; 由勾股定理,得:BD==2.
复制答案
考点分析:
相关试题推荐
如图,等腰梯形ABCD中,AD∥BC,点E是线段AD上的一个动点(E与A、D不重合),G、F、H分别是BE、BC、CE的中点.
(1)试探索四边形EGFH的形状,并说明理由;
(2)当E运动到什么位置时,四边形EGFH是菱形?并加以证明.

manfen5.com 满分网 查看答案
已知:关于x的一元二次方程x2-(2m+1)x+m2+m-2=0.
(1)求证:不论m取何值,方程总有两个不相等的实数根;
(2)若方程的两个实数根x1,x2满足manfen5.com 满分网,求m的值.
查看答案
解方程:
(1)2x2-5x+2=0;
(2)manfen5.com 满分网•tan30°+(tan60°-1)-1
查看答案
如图,BC是⊙O的直径,点A在圆上,且AB=AC=4. P为AB上一点,过P作PE⊥AB分别交BC、OA于E、F.
(1)设AP=1,求△OEF的面积;
(2)设AP=a(0<a<2),△APF、△OEF的面积分别记为S1、S2
①若S1=S2,求a的值;
②若S=S1+S2,是否存在一个实数a,使S<manfen5.com 满分网?若存在,求出一个a的值;若不存在,说明理由.

manfen5.com 满分网 查看答案
已知:如图,正方形ABCD的边长为2a,H是以BC为直径的半圆O上一点,过H与圆O相切的直线交AB于E,交CD于F.
(1)当点H在半圆上移动时,切线EF在AB、CD上的两个交点也分别在AB、CD上移动(E、A不重合,F、D不重合),试问:四边形AEFD的周长是否也在变化?证明你的结论;
(2)设△BOE的面积为S1,△COF的面积为S2,正方形ABCD的面积为S,且S1+S2=manfen5.com 满分网S,求BE与CF的长.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.