满分5 > 初中数学试题 >

如图,⊙C经过原点且与两坐标轴分别交于点A和点B,点A的坐标为(0,2),点B的...

如图,⊙C经过原点且与两坐标轴分别交于点A和点B,点A的坐标为(0,2),点B的坐标为(manfen5.com 满分网,0),解答下列各题:
(1)求线段AB的长;
(2)求⊙C的半径及圆心C的坐标;
(3)在⊙C上是否存在一点P,使得△POB是等腰三角形?若存在,请求出∠BOP的度数;若不存在,请说明理由.

manfen5.com 满分网
(1)根据A、B的坐标,即可求得OA、OB的长,进而可根据勾股定理求出AB的长; (2)由于∠AOB=90°,由圆周角定理知AB即为⊙C的直径,根据AB的长即可求得⊙C的半径;若过C作y轴的垂线,根据三角形中位线定理,很明显的可以看出C点横坐标是B点横坐标的一半,C点纵坐标是A点纵坐标的一半,由此得解; (3)由图知:若△POB是等腰三角形,则P点一定是OB垂直平分线与⊙C的交点,可据此求出P点的坐标及∠BOP的度数. 【解析】 (1)∵A(0,2),B(2,0) ∴OA=2,OB=2; Rt△OAB中,由勾股定理,得:AB==4; (2)∵∠AOB=90°, ∴AB是⊙C的直径; ∴⊙C的半径r=2; 过C作CE⊥y轴于E,则CE∥OB; ∵C是AB的中点, ∴CE是△AOB的中位线, 则OE=OA=1,CE=OB=,即C(,1); 故⊙C的半径为2,C(,1); (3)作OB的垂直平分线,交⊙C于M、N,交OB于D; 如图;连接OC; 由垂径定理知:MN必过点C,即MN是⊙C的直径; ∴M(,3),N(,-1); 在Rt△OMD中,MD=3,OD=, ∴∠BOM=60°; ∵MN是直径, ∴∠MON=90°,∠BON=30°; 由于MN垂直平分OB,所以△OBM、△OBN都是等腰三角形,因此M、N均符合P点的要求; 故存在符合条件的P点:P1(,3),∠BOP1=60°; P2(,-1),∠BOP2=30°.
复制答案
考点分析:
相关试题推荐
观察下列各式及其验算过程:
manfen5.com 满分网=2manfen5.com 满分网,验证:manfen5.com 满分网=manfen5.com 满分网=manfen5.com 满分网=2manfen5.com 满分网
manfen5.com 满分网=3manfen5.com 满分网,验证:manfen5.com 满分网=manfen5.com 满分网=manfen5.com 满分网=3manfen5.com 满分网
(1)按照上述两个等式及其验证过程的基本思路,猜想manfen5.com 满分网的变形结果并进行验证.
(2)针对上述各式反映的规律,写出用n(n为大于1的整数)表示的等式并给予验证.
查看答案
manfen5.com 满分网,则ab=    查看答案
方程(x-3)2=x-3的根是    查看答案
在一块长35米,宽26米的矩形绿地上有宽度相同为x的两条小路,如图,其中绿地面积为850m2,则可列出方程为   
manfen5.com 满分网 查看答案
当x=manfen5.com 满分网-1,分式manfen5.com 满分网的值是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.