满分5 > 初中数学试题 >

如图,在平面直角坐标系中,矩形ABCO的面积为15,边OA比OC大2.E为BC的...

如图,在平面直角坐标系中,矩形ABCO的面积为15,边OA比OC大2.E为BC的中点,以OE为直径的⊙O′交x轴于D点,过点D作DF⊥AE于点F.
(1)求OA、OC的长;
(2)求证:DF为⊙O′的切线;
(3)小明在解答本题时,发现△AOE是等腰三角形.由此,他断定:“直线BC上一定存在除点E以外的点P,使△AOP也是等腰三角形,且点P一定在⊙O′外”.你同意他的看法吗?请充分说明理由.

manfen5.com 满分网
(1)在矩形OABC中,利用边长之间的关系和面积公式即可求得OC,OA的长; (2)连接O′D,通过证明△OCE≌△ABE得到DF⊥O′D,所以DF为⊙O′切线; (3)分两种情况进行分析:①当AO=AP;②当OA=OP,从而得到在直线BC上,除了E点外,既存在⊙O′内的点P,又存在⊙O′外的点P2、P3、P4,它们分别使△AOP为等腰三角形. (1)【解析】 在矩形OABC中,设OC=x,则OA=x+2 ∴x(x+2)=15 ∴x1=3,x2=-5 ∵x2=-5(不合题意,舍去) ∴OC=3,OA=5; (2)证明:连接O′D; ∵在矩形OABC中,, ∴△0CE≌△ABE(SAS), ∴EA=EO, ∴∠1=∠2; ∵在⊙O′中,O′O=O′D, ∴∠1=∠3, ∴∠3=∠2, ∴O′D∥AE; ∵DF⊥AE, ∴DF⊥O′D, ∵点D在⊙O′上,O′D为⊙O′的半径, ∴DF为⊙O′切线; (3)【解析】 不同意.理由如下: ①当A0=AP时,以点A为圆心,以AO为半径画弧交BC于P1和P4两点 过P1点作P1H⊥OA于点H,P1H=0C=3; ∵APl=OA=5, ∴AH=4, ∴OH=l, 求得点P1(1,3)同理可得:P4(9,3)(7分); ②当OA=OP时, 同上可求得P2(4,3),P3(-4,3),(9分) ∴在直线BC上,除了E点外,既存在⊙O′内的点P,又存在⊙O′外的点P2、P3、P4,它们分别使△AOP为等腰三角形.(10分)
复制答案
考点分析:
相关试题推荐
如图,△ABC中,∠ACB=90°,AC=BC=2,将△ABC绕点C逆时针旋转角α.(0°<α<90°)得到△A1B1C,连接BB1,设CB1交AB于D,AlB1分别交AB,AC于E,F.
(1)在图中不再添加其它任何线段的情况下,除了△ABC≌△A1B1C,还有其他三对全等的三角形,请你全部写出来(不用证明);
(2)当BB1=BD时,求α度数;
(3)设BD=x,△ACD的面积为y,求y与x的函数关系式.
manfen5.com 满分网
查看答案
阅读下面的材料:
∵ax2+bx+c=0(a≠0)的根为manfen5.com 满分网manfen5.com 满分网
manfen5.com 满分网manfen5.com 满分网
请利用这一结论解决下列问题:
(1)若x2+bx+c=0的两根为-2和3,求b和c的值.
(2)设方程2x2-3x+1=0的两根为x1、x2,求manfen5.com 满分网的值.
查看答案
设a、b是实数,且b+2manfen5.com 满分网,求manfen5.com 满分网的值.
查看答案
市政府为了解决市民看病难的问题,决定下调药品的价格.某种药品经过两次降价后,每盒售价为100元,比原来降低了19%.但价格仍然较高,于是决定进行第三次降价.若每次降价的百分率相同,则第三次降价后每盒为多少元?
查看答案
计算:manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.