满分5 > 初中数学试题 >

(1)如图(a),已知直线AB过圆心O,交⊙O于A、B,直线AF交⊙O于F(不与...

(1)如图(a),已知直线AB过圆心O,交⊙O于A、B,直线AF交⊙O于F(不与B重合),直线l交⊙O于C、D,交AB于E,且与AF垂直,垂足为G,连接AC、AD.求证:①∠BAD=∠CAG;②AC•AD=AE•AF;
(2)在问题(1)中,当直线l向上平行移动,与⊙O相切时,其他条件不变.
①请你在图(b)中画出变化后的图形,并对照图(a),标记字母;
②问题(1)中的两个结论是否成立?如果成立,请给出证明;如果不成立,请说明理由.manfen5.com 满分网
(1)①可连接BD,由四边形ACDB是圆的内接四边形得出∠DBA=∠ACG,根据等角的余角相等即可得出∠BAD=∠CAG, ②根据所求的比例线段可得出,要证的实际是△FAC和△DAE相似.根据圆周角定理可得出∠AFC=∠ADC.而由①得出的相等角可知,它们的补角也应相等,因此∠DAE=∠CAF,由此可得证. (2)同(1)①的方法类似,只不过由圆内接四边形的外角得出的角相等变成了由弦切角定理得出.其他步骤一样.(也可以连接OC,通过平行和等边对等角来求证) ②方法同(1)②一样,因此(1)中所求的结论均成立. 【解析】 (1)证明: ①连接BD, ∵AB是⊙O的直径, ∴∠ADB=90°. ∴∠AGC=∠ADB=90°. 又∵ACDB是⊙O内接四边形, ∴∠ACG=∠B. ∴∠BAD=∠CAG. ②连接CF, ∵∠BAD=∠CAG,∠EAG=∠FAB, ∴∠DAE=∠FAC. 又∵∠ADC=∠F, ∴△ADE∽△AFC. ∴. ∴AC•AD=AE•AF. (2)①如图; ②两个结论都成立,证明如下: ①连接BC, ∵AB是直径, ∴∠ACB=90°. ∴∠ACB=∠AGC=90°. ∵GC切⊙O于C, ∴∠GCA=∠ABC. ∴∠BAC=∠CAG(即∠BAD=∠CAG). ②连接CF, ∵∠CAG=∠BAC,∠GCF=∠GAC, ∴∠GCF=∠CAE,∠ACF=∠ACG-∠GCF,∠E=∠ACG-∠CAE. ∴∠ACF=∠E. ∴△ACF∽△AEC. ∴. ∴AC2=AE•AF(即AC•AD=AE•AF).
复制答案
考点分析:
相关试题推荐
如图,AB是⊙O的直径,点P在BA的延长线上,弦CD⊥AB于点E,∠POC=∠PCE.
(1)求证:PC是⊙O的切线;
(2)若OE:EA=1:2,PA=6,求⊙O的半径;
(3)求sin∠PCA的值.

manfen5.com 满分网 查看答案
如图,⊙O是△ABC的外接圆,已知∠ACB=45°,∠ABC=120°,⊙O的半径为1,
(1)求弦AC、AB的长;
(2)若P为CB的延长线上一点,试确定P点的位置,使PA与⊙O相切,并证明你的结论.

manfen5.com 满分网 查看答案
如图1所示,在正方形ABCD中,AB=1,manfen5.com 满分网是以点B为圆心,AB长为半径的圆的一段弧,点E是边AD上的任意一点(点E与点A、D不重合),过E作AC所在圆的切线,交边DC于点F,G为切点.
(1)当∠DEF=45°时,求证:点G为线段EF的中点;
(2)设AE=x,FC=y,求y关于x的函数解析式,并写出函数的定义域;
(3)图2所示,将△DEF沿直线EF翻折后得△D1EF,当EF=manfen5.com 满分网时,讨论△AD1D与△ED1F是否相似,如果相似,请加以证明;如果不相似,只要求写出结论,不要求写出理由.

manfen5.com 满分网 查看答案
已知Rt△ABC中,AC=5,BC=12,∠ACB=90°,P是AB边上的动点(与点A、B不重合),Q是BC边上的动点(与点B、C不重合)
(1)如图,当PQ∥AC,且Q为BC的中点时,求线段CP的长;
(2)当PQ与AC不平行时,△CPQ可能为直角三角形吗?若有可能,请求出线段CQ的长的取值范围;若不可能,请说明理由.

manfen5.com 满分网 查看答案
如图,以等腰△ABC的一腰AB为直径的⊙O交BC于D,过D作DE⊥AC于E,可得结论:DE是⊙O的切线.问:
(1)若点O在AB上向点B移动,以O为圆心,OB长为半径的圆仍交BC于D,DE⊥AC的条件不变,那么上述结论是否成立?请说明理由;
(2)如果AB=AC=5cm,sinA=manfen5.com 满分网,那么圆心O在AB的什么位置时,⊙O与AC相切?

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.