满分5 > 初中数学试题 >

如图△ABC中,∠C=90°,AC=6,BC=3,点D在AC边上,以D为圆心的⊙...

如图△ABC中,∠C=90°,AC=6,BC=3,点D在AC边上,以D为圆心的⊙D与AB切于点E.
(1)求证:△ADE∽△ABC;
(2)设⊙D与BC交于点F,当CF=2时,求CD的长;
(3)设CD=a,试给出一个a值使⊙D与BC没有公共点,并说明你给出的a值符合要求.

manfen5.com 满分网
(1)因为点E为切点,则得到∠AED=90°,已知有一组公共角,则根据有两组角相等的两个三角形相似可推出△ADE∽△ABC; (2)连接DF,则DE=DF,设CD=x,则AD=6-x,根据相似三角形的对应边成比例可得到DE的长,再利用勾股定理求得DF的长,则解方程即可得到CD的长; (3)取a=3,(可取<a<6的任意一个数),则AD=3,根据DE<AD即可得到DE<DC从而得到⊙D与BC没有公共点. (1)证明:∵点E是切点 ∴∠AED=90° ∵∠A=∠A,∠ACB=90° ∴△ADE∽△ABC; (2)【解析】 连接DF,则DE=DF 设CD=x,则AD=6-x ∵△ADE∽△ABC ∴ ∴DE= 在RT△DCF中 DF2=x2+CF2=x2+4 ∴=x2+4 x2+3x-4=0 ∴x=1,x=-4(舍去) ∴CD=1(当CD=1时,0<x<6,所以点D在AC上); (3)【解析】 取a=3,(可取<a<6的任意一个数)则AD=AC-CD=3, ∵DE<AD, ∴DE<DC,即d>r, 则⊙D与BC相离, ∴当a=3时,⊙D与BC没有公共点.
复制答案
考点分析:
相关试题推荐
如图,已知AB是半圆O的直径,AP为过点A的半圆的切线.在manfen5.com 满分网上任取一点C(点C与A、B不重合),过点C作半圆的切线CD交AP于点D;过点C作CE⊥AB,垂足为E.连接BD,交CE于点F.
(1)当点C为manfen5.com 满分网的中点时(如图1),求证:CF=EF;
(2)当点C不是manfen5.com 满分网的中点时(如图2),试判断CF与EF的相等关系是否保持不变,并证明你的结论.

manfen5.com 满分网 查看答案
如图,AB是⊙O的直径,点M是半径OA的中点,点P在线段AM上运动(不与点M重合).点Q在上半圆上运动,且总保持PQ=PO,过点Q作⊙O的切线交BA的延长线于点C.
(1)当∠QPA=90°时,判断△QCP是______三角形;
(2)当∠QPA=60°时,请你对△QCP的形状做出猜想,并给予证明;
(3)由(1)、(2)得出的结论,进一步猜想,当点P在线段AM上运动到任何位置时,△QCP一定是______三角形.

manfen5.com 满分网 查看答案
(1)如图(a),已知直线AB过圆心O,交⊙O于A、B,直线AF交⊙O于F(不与B重合),直线l交⊙O于C、D,交AB于E,且与AF垂直,垂足为G,连接AC、AD.求证:①∠BAD=∠CAG;②AC•AD=AE•AF;
(2)在问题(1)中,当直线l向上平行移动,与⊙O相切时,其他条件不变.
①请你在图(b)中画出变化后的图形,并对照图(a),标记字母;
②问题(1)中的两个结论是否成立?如果成立,请给出证明;如果不成立,请说明理由.manfen5.com 满分网
查看答案
如图,AB是⊙O的直径,点P在BA的延长线上,弦CD⊥AB于点E,∠POC=∠PCE.
(1)求证:PC是⊙O的切线;
(2)若OE:EA=1:2,PA=6,求⊙O的半径;
(3)求sin∠PCA的值.

manfen5.com 满分网 查看答案
如图,⊙O是△ABC的外接圆,已知∠ACB=45°,∠ABC=120°,⊙O的半径为1,
(1)求弦AC、AB的长;
(2)若P为CB的延长线上一点,试确定P点的位置,使PA与⊙O相切,并证明你的结论.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.