满分5 > 初中数学试题 >

正方形ABCD的面积是1平方厘米,EF=2BF,则三角形BCF的面积是 .

正方形ABCD的面积是1平方厘米,EF=2BF,则三角形BCF的面积是   
manfen5.com 满分网
解答此题可以将E点的位置特殊化,使E点和D点重合,进而可很容易地得出答案. 【解析】 解法一如图1, . 连接BD,取GD=2BG,把点E移动到点D,则点F与点G重合,结论不变(因为BD位置是BE位置的特殊状态) ∵, ∴. 解法二如图2: 取点N使EN=NF=FB,则△BCE的面积为, △BCF的面积=△BCE的面积=. 故答案为:.
复制答案
考点分析:
相关试题推荐
当你进入博物馆的展览厅时,你知道站在何处观赏最理想?
如图,设墙壁上的展品最高处点P距离地面a米,最低处点Q距离地面b米,观赏者的眼睛点E距离地面m米,当过P、Q、E三点的圆与过点E的水平线相切于点E时,视角∠PEQ最大,站在此处观赏最理想.
(1)设点E到墙壁的距离为x米,求a、b、m、x的关系式;
(2)当a=2.5,b=2,m=1.6,求:
(ⅰ)点E和墙壁距离x;
(ⅱ)最大视角∠PEQ的度数.(精确到1度)

manfen5.com 满分网 查看答案
如图,⊙O′与x轴交于A、B两点,与y轴交于C、D两点,圆心O′的坐标为(1,-1),半径为manfen5.com 满分网
(1)求A,B,C,D四点的坐标;
(2)求经过点D的切线解析式;
(3)问过点A的切线与过点D的切线是否垂直?若垂直,请写出证明过程;若不垂直,试说明理由.

manfen5.com 满分网 查看答案
如图,PA、PB与⊙O切于A、B两点,PC是任意一条割线,且交⊙O于点E、C,交AB于点D.
求证:manfen5.com 满分网

manfen5.com 满分网 查看答案
如图△ABC中,∠C=90°,AC=6,BC=3,点D在AC边上,以D为圆心的⊙D与AB切于点E.
(1)求证:△ADE∽△ABC;
(2)设⊙D与BC交于点F,当CF=2时,求CD的长;
(3)设CD=a,试给出一个a值使⊙D与BC没有公共点,并说明你给出的a值符合要求.

manfen5.com 满分网 查看答案
如图,已知AB是半圆O的直径,AP为过点A的半圆的切线.在manfen5.com 满分网上任取一点C(点C与A、B不重合),过点C作半圆的切线CD交AP于点D;过点C作CE⊥AB,垂足为E.连接BD,交CE于点F.
(1)当点C为manfen5.com 满分网的中点时(如图1),求证:CF=EF;
(2)当点C不是manfen5.com 满分网的中点时(如图2),试判断CF与EF的相等关系是否保持不变,并证明你的结论.

manfen5.com 满分网 查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.