满分5 > 初中数学试题 >

如图,在矩形ABCD中,点O在对角线AC上,以OA的长为半径的⊙O与AD、AC分...

如图,在矩形ABCD中,点O在对角线AC上,以OA的长为半径的⊙O与AD、AC分别交于点E、F,且∠ACB=∠DCE.
(1)判断直线CE与⊙O的位置关系,并说明理由;
(2)若AB=manfen5.com 满分网,BC=2,求⊙O的半径.

manfen5.com 满分网
(1)首先连接OE,由OE=OA与四边形ABCD是矩形,易求得∠DEC+∠OEA=90°,即OE⊥EC,即可证得直线CE与⊙O的位置关系是相切; (2)首先易证得△CDE∽△CBA,然后根据相似三角形的对应边成比例,即可求得DE的长,又由勾股定理即可求得AC的长,然后设OA为x,即可得方程()2-x2=(-x)2,解此方程即可求得⊙O的半径. 【解析】 (1)直线CE与⊙O相切.…(1分) 理由:连接OE, ∵四边形ABCD是矩形, ∴∠B=∠D=∠BAD=90°,BC∥AD,CD=AB,…(2分) ∴∠DCE+∠DEC=90°,∠ACB=∠DAC, 又∠DCE=∠ACB, ∴∠DEC+∠DAC=90°, ∵OE=OA, ∴∠OEA=∠DAC, ∴∠DEC+∠OEA=90°, ∴∠OEC=90°, ∴OE⊥EC,…(3分) ∴直线CE与⊙O相切;…(4分) (2)∵∠B=∠D,∠DCE=∠ACB, ∴△CDE∽△CBA,…(5分) ∴,…(6分) 又CD=AB=,BC=2, ∴DE=1 根据勾股定理得EC=, 又AC==,…(7分) 设OA为x,则()2+x2=(-x)2, 解得x=, ∴⊙O的半径为.…(8分)
复制答案
考点分析:
相关试题推荐
随着绿城南宁近几年城市建设的快速发展,对花木的需求量逐年提高.某园林专业户计划投资种植花卉及树木,根据市场调查与预测,种植树木的利润y1与投资量x成正比例关系,如图①所示;种植花卉的利润y2与投资量x成二次函数关系,如图②所示(注:利润与投资量的单位:万元)
(1)分别求出利润y1与y2关于投资量x的函数关系式;
(2)如果这位专业户以8万元资金投入种植花卉和树木,他至少获得多少利润,他能获取的最大利润是多少?manfen5.com 满分网
查看答案
如图所示,城关幼儿园为加强安全管理,决定将园内的滑滑板的倾斜角由45°降为30°,已知原滑滑板AB的长为4米,点D、B、C在同一水平地面上.
(1)改善后滑滑板会加长多少米?
(2)若滑滑板的正前方能有3米长的空地就能保证安全,原滑滑板的前方有6米长的空地,像这样改造是否可行?请说明理由.
(参考数据:manfen5.com 满分网manfen5.com 满分网manfen5.com 满分网,以上结果均保留到小数点后两位)

manfen5.com 满分网 查看答案
如图,AB是⊙O的切线,A为切点,AC是⊙O的弦,过O作OH⊥AC于点H.若OH=2,AB=12,BO=13.求:
(1)⊙O的半径;
(2)AC的值.

manfen5.com 满分网 查看答案
关于x的方程2x2-(a2-4)x-a+1=0,
(1)a为何值时,方程的一根为0?
(2)a为何值时,两根互为相反数?
(3)试证明:无论a取何值,方程的两根不可能互为倒数.
查看答案
描述一组数据的离散程度,我们可以用“极差”、“方差”、“平均差”[平均差公式为manfen5.com 满分网],现有甲、乙两个样本,
甲:12,13,11,15,10,16,13,14,15,11
乙:11,16,6,14,13,19,17,8,10,16
(1)分别计算甲、乙两个样本的“平均差”,并根据计算结果判断哪个样本波动较大.
(2)分别计算甲、乙两个样本的“方差”,并根据计算结果判断哪个样本波动较大.
(3)以上的两种方法判断的结果是否一致?
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.