如图,在直角坐标系xoy中,O是坐标原点,点A在x正半轴上,OA=
cm,点B在y轴的正半轴上,OB=12cm,动点P从点O开始沿OA以
cm/s的速度向点A移动,动点Q从点A开始沿AB以4cm/s的速度向点B移动,动点R从点B开始沿BO以2cm/s的速度向点O移动.如果P、Q、R分别从O、A、B同时移动,移动时间为t(0<t<6)s.
(1)求∠OAB的度数.
(2)以OB为直径的⊙O′与AB交于点M,当t为何值时,PM与⊙O′相切?
(3)写出△PQR的面积S随动点移动时间t的函数关系式,并求s的最小值及相应的t值.
(4)是否存在△APQ为等腰三角形?若存在,求出相应的t值;若不存在请说明理由.
查看答案