首先根据点D在⊙C内,点B在⊙C外,求得⊙C的半径是大于5而小于12;再根据勾股定理求得AC=13,
最后根据两圆的位置关系得到其数量关系.
【解析】
∵在矩形ABCD中,AB=5,BC=12,
∴AC==13,
∵点D在⊙C内,点B在⊙C外,
∴⊙C的半径R的取值范围为:5<R<12,
∴当⊙A和⊙C内切时,圆心距等于两圆半径之差,则r的取值范围是18<r<25;
当⊙A和⊙C外切时,圆心距等于两圆半径之和是13,设⊙C的半径是Rc,即Rc+r=13,
又∵5<Rc<12,
则r的取值范围是1<r<8.
所以半径r的取值范围是18<r<25或1<r<8.