满分5 > 初中数学试题 >

光华农机租赁公司共有50台联合收割机,其中甲型20台,乙型30台,先将这50台联...

光华农机租赁公司共有50台联合收割机,其中甲型20台,乙型30台,先将这50台联合收割机派往A、B两地区收割小麦,其中30台派往A地区,20台派往B地区.两地区与该农机租赁公司商定的每天的租赁价格见表:
每台甲型收割机的租金每台乙型收割机的租金
A地区18001600
B地区16001200
(1)设派往A地区x台乙型联合收割机,租赁公司这50台联合收割机一天获得的租金为y(元),求y与x间的函数关系式,并写出x的取值范围;
(2)若使农机租赁公司这50台联合收割机一天获得的租金总额不低于79 600元,说明有多少种分配方案,并将各种方案设计出来;
(3)如果要使这50台联合收割机每天获得的租金最高,请你为光华农机租赁公司提一条合理化建议.
(1)在A、B两地分配甲、乙两种类型的收割机,注意各数之间的联系; (2)由租金总额不低于79 600元求出x的取值范围设计分配方案; (3)此为求函数的最大值问题. 【解析】 (1)若派往A地区的乙型收割机为x台, 则派往A地区的甲型收割机为(30-x)台, 派往B地区的乙型收割机为(30-x)台, 派往B地区的甲型收割机为20-(30-x)=(x-10)台. ∴y=1600x+1800(30-x)+1200(30-x)+1600(x-10)=200x+74 000, x的取值范围是:10≤x≤30,(x是正整数); (2)由题意得200x+74 000≥79 600,解不等式得x≥28, 由于10≤x≤30,x是正整数, ∴x取28,29,30这三个值, ∴有3种不同的分配方案. ①当x=28时,即派往A地区的甲型收割机为2台,乙型收割机为28台;派往B地区的甲型收割机为18台,乙型收割机为2台; ②当x=29时,即派往A地区的甲型收割机为1台,乙型收割机为29台;派往B地区的甲型收割机为19台,乙型收割机为1台; ③当x=30时,即30台乙型收割机全部派往A地区;20台甲型收割机全部派往B地区; (3)由于一次函数y=200x+74 000的值y是随着x的增大而增大的, 所以当x=30时,y取得最大值, 如果要使农机租赁公司这50台联合收割机每天获得租金最高,只需x=30,此时y=6000+74 000=80 000. 建议农机租赁公司将30台乙型收割机全部派往A地区;20台甲型收割机全部派往B地区,可使公司获得的租金最高.
复制答案
考点分析:
相关试题推荐
已知:在△ABC中,∠ACB=90°,AC=BC,现将一块边长足够大的直角三角板的直角顶点置于AB的中点O处,两直角边分别经过点B、C,然后将三角板绕点O按顺时针方向旋转一个角度反(0°<a<90°),旋转后,直角三角板的直角边分别与AC、BC相交于点K、H,四边形CHOK是旋转过程中三角板与△ABC的重叠部分(如图1所示).那么,在上述旋转过程中:
(1)如图1,线段BH与CK具有怎样的数量关系?四边形CHOK的面积是否发生变化?请说明你发现的结论的理由.
(2)如图2,连接HK,
①若AK=12,BH=5,求△OKH的面积;
②若AC=BC=4,设BH=x,当△CKH的面积为2时,求x的值,并说出此时四边形CHOK是什么特殊四边形.manfen5.com 满分网
查看答案
如图,在⊙O中,弦CD垂直于直径AB.M是OC的中点,AM的延长线交⊙O于E,DE交BC于N.求证:BN=CN.

manfen5.com 满分网 查看答案
如图,平行四边形ABCD中,AB=4,点D的坐标是(0,8),以点C为顶点的抛物线y=ax2+bx+c经过x轴上的点A,B.
(1)求点A,B,C的坐标;
(2)若抛物线向上平移后恰好经过点D,求平移后抛物线的解析式.

manfen5.com 满分网 查看答案
如图,ABCD是矩形纸片,翻折∠B,∠D,使BC,AD恰好落在AC上.设F,H分别是B,D落在AC上的两点,E,G分别是折痕CE,AG与AB,CD的交点.
(1)求证:四边形AECG是平行四边形;
(2)若AB=4cm,BC=3cm,求线段EF的长.

manfen5.com 满分网 查看答案
如图,在矩形ABCD中,动点P从点B出发,沿BC、CD、DA运动至点A停止,设点P运动的路程为x,△ABP的面积为y,如果y关于x的函数图象如图所示,则△ABC的面积是( )
manfen5.com 满分网
A.10
B.16
C.18
D.20
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.