满分5 > 初中数学试题 >

如图,在△ABC中,AB=AC=1,点D,E在直线BC上运动.设BD=x,CE=...

如图,在△ABC中,AB=AC=1,点D,E在直线BC上运动.设BD=x,CE=y.
(1)如果∠BAC=30°,∠DAE=105°,试确定y与x之间的函数关系式;
(2)如果∠BAC=α,∠DAE=β,当α,β满足怎样的关系时,(1)中y与x之间的函数关系式还成立?试说明理由.

manfen5.com 满分网
(1)利用等腰三角形的性质得∠ABD=∠ACE=105°,利用等量代换求得∠CAE=∠ADB,故△ADB∽△EAC后,得,即所以y=; (2)要使y=,即成立,则要△ADB∽△EAC.由于∠ABD=∠ECA,故只须∠ADB=∠EAC,利用三角形的内角和和邻补角的概念求得∠EAC+∠BAD=β-α,∠ADB+∠BAD=∠ABC=90°-,所以只90°-=β-α,须即β-=90°. 【解析】 (1)在△ABC中,AB=AC=1,∠BAC=30°, ∴∠ABC=∠ACB=75°, ∴∠ABD=∠ACE=105°, ∵∠DAE=105°, ∴∠DAB+∠CAE=75°, 又∠DAB+∠ADB=∠ABC=75°, ∴∠CAE=∠ADB, ∴△ADB∽△EAC, ∴ 即,所以y=; (2)当α、β满足关系式β-时,函数关系式y=成立, 理由如下:∵β-=90°, ∴β-α=90°-. 又∵∠EAC=∠DAE-∠BAC-∠DAB=β-α-∠DAB, ∠ADB=∠ABC-∠DAB=90°--∠DAB, ∴∠ADB=∠EAC; 又∵∠ABD=∠ECA, ∴△ADB∽△EAC, ∴, ∴, ∴y=.
复制答案
考点分析:
相关试题推荐
甲、乙两船从河中A地同时出发,匀速顺水下行至某一时刻,两船分别到达B地和C地.已知河中各处水流速度相同,且A地到B地的航程大于A地到C地的航程.两船在各自动力不变情况下,分别从B地和C地驶回A地所需的时间为t1和t2.试比较t1和t2的大小关系.
查看答案
请设计三种方案:把一个正方形剪两刀,使剪得的三块图形能够拼成一个三角形,并且使拼成的三角形既不是直角三角形也不是等腰三角形,画出必要的示意图,并附以简要的文字说明.
查看答案
某企业投资100万元引进一条产品加工生产线,若不计维修、保养费用,预计投产后每年可创利33万.该生产线投产后,从第1年到第x年的维修、保养费用累计为y(万元),且y=ax2+bx,若第1年的维修、保养费用为2万元,第2年为4万元.
(1)求y的解析式;
(2)投产后,这个企业在第几年就能收回投资?
查看答案
如图,已知A是直线l外的一点,B是l上的一点.
求作:(1)⊙O,使它经过A,B两点,且与l有交点C;
(2)锐角△BCD,使它内接于⊙O.
(说明:只要求作出符合条件的一个圆和一个三角形,要求写出作法,不要求证明)
manfen5.com 满分网
查看答案
用两种不同的方法证明“三角形的内角和等于180°”.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.