满分5 > 初中数学试题 >

如图,在平面直角坐标系xOy中,△ABC三个顶点的坐标分别为A(-6,0),B(...

如图,在平面直角坐标系xOy中,△ABC三个顶点的坐标分别为A(-6,0),B(6,0),C(0,4manfen5.com 满分网),延长AC到点D,使CD=manfen5.com 满分网AC,过点D作DE∥AB交BC的延长线于点E.
(1)求D点的坐标;
(2)作C点关于直线DE的对称点F,分别连接DF、EF,若过B点的直线y=kx+b将四边形CDFE分成周长相等的两个四边形,确定此直线的解析式;
(3)设G为y轴上一点,点P从直线y=kx+b与y轴的交点出发,先沿y轴到达G点,再沿GA到达A点,若P点在y轴上运动的速度是它在直线GA上运动速度的2倍,试确定G点的位置,使P点按照上述要求到达A点所用的时间最短.(要求:简述确定G点位置的方法,但不要求证明)

manfen5.com 满分网
(1)借助△DMC∽△AOC,根据相似三角形的性质得点D的坐标; (2)先说明四边形CDFE是菱形,且其对称中心为对角线的交点M,则点B与这一点的连线即为所求的直线,再结合全等三角形性质说明即可,由点B、M的坐标求得直线BM的解析式; (3)过点A作MB的垂线,该垂线与y轴的交点即为所求的点G,再结合由OB、OM的长设法求出∠BAH,借助三角函数求出点G的坐标. 【解析】 (1)∵A(-6,0),C(0,4) ∴OA=6,OC=4 设DE与y轴交于点M 由DE∥AB可得△DMC∽△AOC 又∵CD=AC ∴ ∴CM=2,MD=3 同理可得EM=3 ∴OM=6 ∴D点的坐标为(3,6); (2)由(1)可得点M的坐标为(0,6) 由DE∥AB,EM=MD 可得y轴所在直线是线段ED的垂直平分线 ∴点C关于直线DE的对称点F在y轴上 ∴ED与CF互相垂直平分 ∴CD=DF=FE=EC ∴四边形CDFE为菱形,且点M为其对称中心 作直线BM,设BM与CD、EF分别交于点S、点T, 可证△FTM≌△CSM ∴FT=CS, ∵FE=CD, ∴TE=SD, ∵EC=DF, ∴TE+EC+CS+ST=SD+DF+FT+TS, ∴直线BM将四边形CDFE分成周长相等的两个四边形, 由点B(6,0),点M(0,6)在直线y=kx+b上,可得直线BM的解析式为y=-x+6. (3)确定G点位置的方法:过A点作AH⊥BM于点H,则AH与y轴的交点为所求的G点 由OB=6,OM=6, 可得∠OBM=60°, ∴∠BAH=30°, 在Rt△OAG中,OG=AO•tan∠BAH=2, ∴G点的坐标为.(或G点的位置为线段OM的中点)
复制答案
考点分析:
相关试题推荐
已知:如图,在直角梯形ABCD中,AD∥BC,∠ABC=90°,DE⊥AC于点F,交BC于点G,交AB的延长线于点manfen5.com 满分网E,且AE=AC.
(1)求证:BG=FG;
(2)若AD=DC=2,求AB的长.
查看答案
有一个可自由转动的转盘,被分成了4个相同的扇形,分别标有数1,2,3,4(如图所示),另有一个不透明的口袋装有分别标有数0,1,3的三个小球(除数不同外,其余都相同),小亮转动一次转盘,停止后指针指向某一扇形,扇形内的数是小亮的幸运数,小红任意摸出一个小球,小球上的数是小红的吉祥数,然后计算这两个数的积.
(1)请你用画树状图或列表的方法,求这两个数的积为0的概率;
(2)小亮与小红做游戏,规则是:若这两个数的积为奇数,小亮赢;否则,小红赢.你认为该游戏公平吗?为什么?如果不公平,请你修改该游戏规则,使游戏公平.

manfen5.com 满分网 查看答案
已知:如图,在平面直角坐标系xOy中,直线AB分别与x、y轴交于点B、A,与反比例函数的图象分别交于点C、D,CE⊥x轴于点E,tan∠ABO=manfen5.com 满分网,OB=4,OE=2.
(1)求该反比例函数的解析式;
(2)求直线AB的解析式.

manfen5.com 满分网 查看答案
已知:如图,在△ABC中,∠ACB=90°,CD⊥AB于点D,点E在AC上,CE=BC,过E点作AC的垂线,交CD的延长线于点F.
求证:AB=FC.

manfen5.com 满分网 查看答案
已知x2-5x=14,求(x-1)(2x-1)-(x+1)2+1的值.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.