如图,AB是⊙O的直径,BD是⊙O的弦,延长BD到点C,使DC=BD,连接AC交⊙O于点F.
(1)AB与AC的大小有什么关系?为什么?
(2)按角的大小分类,请你判断△ABC属于哪一类三角形,并说明理由.
考点分析:
相关试题推荐
天水市某蔬菜基地有120吨新鲜蔬菜,计划用A,B两种货运车运往外地销售,已知A种车能装载5吨,B种车能装载6吨.
(1)若有A,B两种车共22辆,在满载情况下,能将这些蔬菜全部运完,那么A,B两种车各有多少辆?
(2)若A种车每辆每趟运费为1500元,B种车每辆每趟运费为1700元,要在车辆满载、且总运费不超过34 500元的情况下,将蔬菜全部运完.应怎样选择最佳配车方案?
查看答案
如图,四边形ABCD内接于⊙O,BD是⊙O的直径,AE⊥CD,垂足为E,DA平分∠BDE.
(1)求证:AE是⊙O的切线;
(2)若∠DBC=30°,DE=1cm,求BD的长.
查看答案
如图,某海军基地位于A处,其正南方向200海里处有一个重要目标B,在B的正东方向200海里处有一重要目标C.小岛D位于AC的中点,岛上有一补给码头;小岛F位于BC上且恰好处于小岛D的正南方向,一艘军舰从A出发,经B到C匀速巡航,一艘补给船同时从D出发,沿南偏西方向匀速直线航行,欲将一批物品送达军舰.
(1)小岛D和小岛F相距多少海里?
(2)已知军舰的速度是补给船速度的2倍,军舰在由B到C航行的途中与补给船相遇于E处,那么相遇时补给船航行了多少海里?(结果精确到0.1海里,
≈2.45)
查看答案
如图,点A是反比例函数
的图象与一次函数y=x+k的图象的一个交点,AC垂直x轴于点C,AD垂直y轴于点D,且矩形OCAD的面积为2.
(1)求这两个函数的解析式;
(2)求这两个函数图象的另一个交点B的坐标.
查看答案
探究下表中的奥秘,并完成填空:
一元二次方程 | 两个根 | 二次三项式因式分解 |
x2-2x+1=0 | x1=1,x2=1 | x2-2x+1=(x-1)(x-1) |
x2-3x+2=0 | x1=1,x2=2 | x2-3x+2=(x-1)(x-2) |
3x2+x-2=0 | x1=______,x2=-1 | 3x2+x-2=3(x-______)(x+1) |
2x2+5x+2=0 | x1=______,x2=-2 | 2x2+5x+2=2(x+______)(x+2) |
4x2+13x+3=0 | x1=______,x2=______ | 4x2+13x+3=4(x+______)(x+______) |
查看答案