满分5 > 初中数学试题 >

如图:二次函数y=-x2+ax+b的图象与x轴交于A(-,0),B(2,0)两点...

如图:二次函数y=-x2+ax+b的图象与x轴交于A(-manfen5.com 满分网,0),B(2,0)两点,且与y轴交于点C.
(1)求该抛物线的解析式,并判断△ABC的形状;
(2)在x轴上方的抛物线上有一点D,且A、C、D、B四点为顶点的四边形是等腰梯形,请直接写出D点的坐标;
(3)在此抛物线上是否存在点P,使得以A、C、B、P四点为顶点的四边形是直角梯形?若存在,求出P点的坐标;若不存在,说明理由.

manfen5.com 满分网
(1)将A、B的坐标代入抛物线的解析式中即可确定抛物线的解析式;进而可得到C点坐标,进而可求出AC、BC、AB的长,然后再判断△ABC的形状; (2)根据抛物线和等腰梯形的对称性知,点C关于抛物线对称轴的对称点符合点D的要求,由此可求出点D的坐标; (3)在(1)题已将证得∠ACB=90°,若A、C、B、P四点为顶点的四边形是直角梯形,则有两种情况需要考虑: ①以BC、AP为底,AC为高;可先求出直线BC的解析式,进而可确定直线AP的解析式,联立抛物线的解析式即可求出点P的坐标. ②以AC、BP为底,BC为高;方法同①. 【解析】 (1)由题意得:, 解得; ∴抛物线的解析式为y=-x2+x+1; ∴C(0,1); ∴AC2=+1=,BC2=1+4=5,AB2=(2+)2=; ∴AC2+BC2=AB2,即△ABC是直角三角形,且∠ACB=90°; (2)由(1)的抛物线知:其对称轴方程为x=; 根据抛物线和等腰梯形的对称性知:点D(,1); (3)存在,点P(,-)或(-,-9); 若以A、C、B、P四点为顶点的直角梯形以BC、AP为底; ∵B(2,0),C(0,1), ∴直线BC的解析式为:y=-x+1; 设过点A且平行于BC的直线的解析式为y=-x+h, 则有:(-)×(-)+h=0,h=-; ∴y=-x-; 联立抛物线的解析式有: , 解得,; ∴点P(,-); 若以A、C、B、P四点为顶点的直角梯形以AC、BP为底, 同理可求得P(-,-9); 故当P(,-)或(-,-9)时,以A、C、B、P四点为顶点的四边形是直角梯形. (根据抛物线的对称性求出另一个P点坐标亦可)
复制答案
考点分析:
相关试题推荐
如图是两个可以自由转动的转盘,甲转盘被等分成3个扇形,乙转盘被等分成4个扇形,每一个扇形上都标有相应的数字.小亮和小颖利用它们做游戏,游戏规则是:同时转动两个转盘,当转盘停止后,指针所指区域内的数字之和小于10,小颖获胜;指针所指区域内的数字之和等于10,为平局;指针所指区域内的数字之和大于10,小亮获胜.如果指针恰好指在分割线上,那么重转一次,直到指针指向一个数字为止.
(1)请你通过画树状图的方法求小颖获胜的概率;
(2)你认为该游戏规则是否公平?若游戏规则公平,请说明理由;若游戏规则不公平,请你设计出一种公平的游戏规则.

manfen5.com 满分网 查看答案
(1)计算-22+manfen5.com 满分网-(manfen5.com 满分网-1×(π-manfen5.com 满分网
(2)先化简,再求值:manfen5.com 满分网÷(a+manfen5.com 满分网),其中a=manfen5.com 满分网-1,b=1.
查看答案
某校欲招聘一名数学教师,学校对甲、乙、丙三位候选人进行了三项能力测试,各项测试成绩满分均为100分,根据结果择优录用.三位候选人的各项测试成绩如下表所示:
试项目测试成绩
教学能力857373
科研能力707165
组织能力647284
(1)如果根据三项测试的平均成绩,谁将被录用,说明理由;
(2)根据实际需要,学校将教学、科研和组织三项能力测试得分按5:3:2的比例确定每人的成绩,谁将被录用,说明理由.
查看答案
已知二次函数y=ax2+bx+c的图象与x轴交于点(-2,0),(x1,0),且1<x1<2,与y轴正半轴的交点在(0,2)的下方,下列结论:①a<b<0;②2a+c>0;③4a+c<0;④2a-b+1>0.其中正确的结论是    (填写序号) 查看答案
若不等式组manfen5.com 满分网的解集是-1<x<2,则a=    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.