满分5 > 初中数学试题 >

如图,在矩形ABCD中,AD=8,点E是AB边上的一点,AE=2.过D,E两点作...

如图,在矩形ABCD中,AD=8,点E是AB边上的一点,AE=2manfen5.com 满分网.过D,E两点作直线PQ,与BC边所在的直线MN相交于点F.
(1)求tan∠ADE的值;
(2)点G是线段AD上的一个动点,GH⊥DE,垂足为H.设DG为x,四边形AEHG的面积为y,试写出y与x之间的函数关系式;
(3)如果AE=2EB,点O是直线MN上的一个动点,以O为圆心作圆,使⊙O与直线PQ相切,同时又与矩形ABCD的某一边相切.问满足条件的⊙O有几个?并求出其中一个圆的半径.
manfen5.com 满分网
(1)在Rt△ADE中,已知AD,AE的长,根据三角函数tan∠ADE=,代入数据进行求解即可; (2)根据y=S△AED-S△DGH,S△AED=AD•AE,S△DGH=DG•DH•sin∠ADE,故应求sin∠ADE和DH的值; 在Rt△ADE中,根据勾股定理可将DE的值求出,又知AE的长,故可将sin∠ADH的值求出; 在Rt△DGH中,根据三角函数可将DH的值求出,故将各数据代入进行求解可写出y与x之间的函数关系式; (3)满足条件的⊙O有4个:⊙O在AB的左侧与AB相切;⊙O在AB的右侧与AB相切;⊙O在CD的左侧与CD相切;⊙O在CD的右侧与CD相切.⊙O在AB的左侧与AB相切为例:作辅助线,过点O作OI⊥FP,垂足为I.根据AD∥FN,得:△AED∽△BEF,可知sin∠PFN,FB的值,在Rt△FOI中,根据sin∠PFN=,可将⊙O的半径求出,其他情况同理可求解半径r. 【解析】 (1)∵矩形ABCD中,∠A=90°,AD=8,AE=2, ∴tan∠ADE===. (2)∵DE===6, ∴sin∠ADE===,cos∠ADE===. 在Rt△DGH中, ∵GD=x, ∴DH=DG•cos∠ADE=x, ∴S△DGH=DG•DH•sin∠ADE=•x•x•=x2. ∵S△AED=AD•AE=×8×2=8, ∴y=S△AED-S△DGH=8-x2, 即y与x之间的函数关系式是y=-x2+8. (3)满足条件的⊙O有4个. 以⊙O在AB的左侧与AB相切为例,求⊙O半径如下: ∵AD∥FN, ∴△AED∽△BEF. ∴∠PFN=∠ADE. ∴sin∠PFN=sin∠ADE=. ∵AE=2BE, ∴△AED与△BEF的相似比为2:1, ∴=,FB=4. 过点O作OI⊥FP,垂足为I,设⊙O的半径为r,那么FO=4-r. ∵sin∠PFN===, ∴r=1. (满足条件的⊙O还有:⊙O在AB的右侧与AB相切,这时r=2;⊙O在CD的左侧与CD相切,这时r=3;⊙O在CD的右侧与CD相切,这时r=6)
复制答案
考点分析:
相关试题推荐
如图,直线AB经过⊙O上的点C,并且OA=OB,CA=CB,直线OB交⊙O于点E,D,连接EC,CD.
(1)试判断直线AB与⊙O的位置关系,并加以证明;
(2)求证:BC2=BD•BE;
(3)若tanE=manfen5.com 满分网,⊙O的半径为3,求OA的长.

manfen5.com 满分网 查看答案
我市某工艺品厂生产一款工艺品、已知这款工艺品的生产成本为每件60元.
经市场调研发现:该款工艺品每天的销售量y(件)与售价x(元)之间存在着如下表所示的一次函数关系.
售价x(元)7090
销售量y(件)30001000
(利润=(售价-成本价)×销售量)
(1)求销售量y(件)与售价x(元)之间的函数关系式;
(2)你认为如何定价才能使工艺品厂每天获得的利润为40000元?
查看答案
如图是某货站传送货物的平面示意图.为了提高传送过程的安全性,工人师傅欲减小传送带与地面的夹角,使其由45°改为30°.已知原传送带AB长为4米.
(1)求新传送带AC的长度;
(2)如果需要在货物着地点C的左侧留出2米的通道,试判断距离B点4米的货物MNQP是否需要挪走,并说明理由.(说明:(1)(2)的计算结果精确到0.1米,参考数据:manfen5.com 满分网≈1.41,manfen5.com 满分网≈1.73,manfen5.com 满分网≈2.24,manfen5.com 满分网≈2.45)

manfen5.com 满分网 查看答案
2009年宁波市初中毕业生升学体育集中测试项目包括体能(耐力)类项目和速度(跳跃、力量、技能)类项目.体能类项目从游泳和中长跑中任选一项,速度类项目从立定跳远、50米跑等6项中任选一项.某校九年级共有200名女生在速度类项目中选择了立定跳远,现从这200名女生中随机抽取10名女生进行测试,下面是她们测试结果的条形图.(另附:九年级女生立定跳远的计分标准)
九年级女生立定跳远计分标准:
成绩(cm) 197 189 181 173 
分值(分)  10  9  8  7
(注:不到上限,则按下限计分,满分10分)
(1)求这10名女生在本次测试中,立定跳远距离的极差,立定跳远得分的众数和平均数;
(2)请你估计该校选择立定跳远的200名女生得满分的人数.

manfen5.com 满分网 查看答案
从甲地到乙地有A1、A2两条路线,从乙地到丙地有B1、B2、B3三条路线,从丙地到丁地有C1、C2两条路线.一个人任意选了一条从甲地到丁地的路线,求他恰好选到B2路线的概率是多少?
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.