如图,在矩形ABCD中,AD=8,点E是AB边上的一点,AE=2
.过D,E两点作直线PQ,与BC边所在的直线MN相交于点F.
(1)求tan∠ADE的值;
(2)点G是线段AD上的一个动点,GH⊥DE,垂足为H.设DG为x,四边形AEHG的面积为y,试写出y与x之间的函数关系式;
(3)如果AE=2EB,点O是直线MN上的一个动点,以O为圆心作圆,使⊙O与直线PQ相切,同时又与矩形ABCD的某一边相切.问满足条件的⊙O有几个?并求出其中一个圆的半径.
考点分析:
相关试题推荐
如图,直线AB经过⊙O上的点C,并且OA=OB,CA=CB,直线OB交⊙O于点E,D,连接EC,CD.
(1)试判断直线AB与⊙O的位置关系,并加以证明;
(2)求证:BC
2=BD•BE;
(3)若tanE=
,⊙O的半径为3,求OA的长.
查看答案
我市某工艺品厂生产一款工艺品、已知这款工艺品的生产成本为每件60元.
经市场调研发现:该款工艺品每天的销售量y(件)与售价x(元)之间存在着如下表所示的一次函数关系.
售价x(元) | … | 70 | 90 | … |
销售量y(件) | … | 3000 | 1000 | … |
(利润=(售价-成本价)×销售量)
(1)求销售量y(件)与售价x(元)之间的函数关系式;
(2)你认为如何定价才能使工艺品厂每天获得的利润为40000元?
查看答案
如图是某货站传送货物的平面示意图.为了提高传送过程的安全性,工人师傅欲减小传送带与地面的夹角,使其由45°改为30°.已知原传送带AB长为4米.
(1)求新传送带AC的长度;
(2)如果需要在货物着地点C的左侧留出2米的通道,试判断距离B点4米的货物MNQP是否需要挪走,并说明理由.(说明:(1)(2)的计算结果精确到0.1米,参考数据:
≈1.41,
≈1.73,
≈2.24,
≈2.45)
查看答案
2009年宁波市初中毕业生升学体育集中测试项目包括体能(耐力)类项目和速度(跳跃、力量、技能)类项目.体能类项目从游泳和中长跑中任选一项,速度类项目从立定跳远、50米跑等6项中任选一项.某校九年级共有200名女生在速度类项目中选择了立定跳远,现从这200名女生中随机抽取10名女生进行测试,下面是她们测试结果的条形图.(另附:九年级女生立定跳远的计分标准)
九年级女生立定跳远计分标准:
成绩(cm) | 197 | 189 | 181 | 173 | … |
分值(分) | 10 | 9 | 8 | 7 | … |
(注:不到上限,则按下限计分,满分10分)
(1)求这10名女生在本次测试中,立定跳远距离的极差,立定跳远得分的众数和平均数;
(2)请你估计该校选择立定跳远的200名女生得满分的人数.
查看答案
从甲地到乙地有A
1、A
2两条路线,从乙地到丙地有B
1、B
2、B
3三条路线,从丙地到丁地有C
1、C
2两条路线.一个人任意选了一条从甲地到丁地的路线,求他恰好选到B
2路线的概率是多少?
查看答案