由△ABC绕点C按逆时针方向旋转角α后到△A′B′C′,根据旋转的性质得到CB=CB′,∠ACA′=∠BCB′=α,∠A=∠A′,在△A′B′C中,利用三角形的内角和定理可求得,∠B′=90°-20°=70°,于是∠BCB′=180°-70°-70°=40°,再利用三角形的外角性质得到∠BDC=∠ACA′+∠A=40°+20°=60°.
【解析】
∵△ABC绕点C按逆时针方向旋转角α后到△A′B′C′,
∴CB=CB′,∠ACA′=∠BCB′=α,∠A=∠A′,
又∵∠ACB=90°,∠A=20°,
∴∠A′=20°,∠B′=90°-20°=70°,
∴∠BCB′=180°-70°-70°=40°,
∴∠ACA′=40°,
∴∠BDC=∠ACA′+∠A=40°+20°=60°.
故答案为60.