如图,直线OC、BC的函数关系式分别为y=x和y=-2x+6,动点P(x,0)在OB上移动(0<x<3),过点P作直线l与x轴垂直.
(1)求点C的坐标;
(2)设△OBC中位于直线l左侧部分的面积为s,写出s与x之间的函数关系式;
(3)在直角坐标系中画出(2)中函数的图象;
(4)当x为何值时,直线l平分△OBC的面积?
考点分析:
相关试题推荐
转炉炼钢产生的棕红色烟尘会污染大气,某装置可通过回收棕红色烟尘中的氧化铁从而降低污染.该装置的氧化铁回收率与其通过的电流有关,现经过试验得到下列数据:
通过电流强度(单位:A) | 1 | 1.7 | 1.9 | 2.1 | 2.4 |
氧化铁回收率(%) | 75 | 79 | 88 | 87 | 78 |
如图建立直角坐标系,用横坐标表示通过的电流强度,纵坐标表示氧化铁回收率.
(1)将试验所得数据在上图所给的直角坐标系中用点表示;(注:该图中坐标轴的交点代表点(1,70))
(2)用线段将题(1)所画的点从左到右顺次连接,若用此图象来模拟氧化铁回收率y关于通过电流x的函数关系,试写出该函数在1.7≤x≤2.4时的表达式;
(3)利用题(2)所得函数关系,求氧化铁回收率大于85%时,该装置通过的电流应该控制的范围.(精确到0.1A)
查看答案
在直角坐标系中,有四个点A(-8,3),B(-4,5),C(0,n),D(m,0),当四边形ABCD的周长最短时,求
的值.
查看答案
如图,△AOB为正三角形,点B坐标为(2,0),过点C(-2,0)作直线L交AO于D,交AB于E,且使△ADE和△DCO的面积相等,求直线L的函数解析式.
查看答案
有一个附有进、出水管的容器,每单位时间进、出的水量都是一定的,设从某时刻开始5分钟内只进不出水,在随后的15分钟内既进水又出水,得到时间x(分)与水量y(升)之间的关系如下图.若20分钟后只出水不进水,求这时(即x≥20)y与x之间的函数关系式.
查看答案
如图,已知点A与点B的坐标分别为(4,0),(0,2).
(1)求直线AB的解析式;
(2)过点C(2,0)的直线(与x轴不重合)与△AOB的另一边相交于点P,若截得的三角形与△AOB全等,求点P的坐标.
查看答案