满分5 > 初中数学试题 >

如图,在梯形ABCD中,AB∥CD,∠BCD=90°,且AB=1,BC=2,ta...

如图,在梯形ABCD中,AB∥CD,∠BCD=90°,且AB=1,BC=2,tan∠ADC=2.
(1)求证:DC=BC;
(2)E是梯形内一点,F是梯形外一点,且∠EDC=∠FBC,DE=BF,试判断△ECF的形状,并证明你的结论;
(3)在(2)的条件下,当BE:CE=1:2,∠BEC=135°时,求sin∠BFE的值.

manfen5.com 满分网
(1)此题要证明DC=BC不能用全等三角形的性质,利用tan∠ADC=2求出BC然后再判定相等; (2)容易证明△DEC≌△BFC,得CE=CF,∠ECD=∠FCB,这样容易证明△ECF是等腰直角三角形; (3)由∠BEC=135°得∠BEF=90°,这样求sin∠BFE,然后利用已知条件就可以求出它的值了. (1)证明:过A作DC的垂线AM交DC于M,则AM=BC=2. 又tan∠ADC=2, ∴DM==1, 即DC=BC; (2)【解析】 等腰直角三角形. 证明:因为DE=BF,∠EDC=∠FBC,DC=BC, ∴△DEC≌△BFC, ∴CE=CF,∠ECD=∠FCB, ∴∠ECF=∠FCB+∠BCE=∠ECD+∠BCE=∠BCD=90°, 即△ECF是等腰直角三角形; (3)【解析】 设BE=k,则CE=CF=2k, ∴EF=2k, ∵∠BEC=135°,又∠CEF=45°, ∴∠BEF=90°, 所以BF==3k, 所以sin∠BFE==.
复制答案
考点分析:
相关试题推荐
manfen5.com 满分网如图,一次函数y=kx+b的图象与反比例函数y=manfen5.com 满分网的图象相交于A、B两点.
(1)根据图象,分别写出A、B的坐标;
(2)求出两函数解析式;
(3)根据图象回答:当x为何值时,一次函数的函数值>反比例函数的函数值.
查看答案
已知抛物线y=2x2-3x+m(m为常数)与x轴交于A、B两点,且线段AB的长为manfen5.com 满分网
(1)求m的值;
(2)若该抛物线的顶点为P,求△ABP的面积.
查看答案
如图,已知A、F、C、D在同一直线上,AB∥DE,AB=DE,AF=CD.
(1)图中有哪几对全等三角形?(直接写出结论即可)
(2)四边形BFEC是什么特殊的四边形?请给出证明.

manfen5.com 满分网 查看答案
在某市的旧城改造某一项目中,要将一棵没有观赏价值的树放倒,栽上白玉兰,在操作过程中,李师傅要直接把树放倒,张师傅不同意,他担心这样会损坏这棵树周围4.5米处的花园和雕塑,请你根据图中标注的测量数据,通过计算说明:张师傅的担心是否有必要?
(供选数据:sin65°=0.9063,cos65°=0.4225,tan65°=2.145)

manfen5.com 满分网 查看答案
学习了统计知识后,小刚就本班同学的上学方式进行了一次调查统计.图(1)和图(2)是他通过采集数据后,绘制的两幅不完整的统计图.请你根据图中提供的信息,解答以下问题:
(1)求该班共有多少名学生?
(2)在图(1)中,将表示“步行”的部分补充完整;
(3)在扇形统计图中,计算出“骑车”部分所对应的圆心角的度数;
(4)如果全年级共500名同学,请你估算全年级步行上学的学生人数.
manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.