满分5 > 初中数学试题 >

已知关于x的方程(a-1)x2+2x-a-1=0的根都是一整数,那么符合条件的整...

已知关于x的方程(a-1)x2+2x-a-1=0的根都是一整数,那么符合条件的整数a有    个.
首先利用当a=1时,得到一个一元一次方程,直接得出根,当a≠1,把x=1,代入方程,得出a的取值. 【解析】 ①当a=1时,x=1; ②当a≠1时,原式可以整理为:[(a-1)x+a+1](x-1)=0, 易知x=1是方程的一个整数根, 再由1+x=且x是整数,知1-a=±1或±2, ∴a=-1,0,2,3;由①、②得符合条件的整数a有5个. 故填:5.
复制答案
考点分析:
相关试题推荐
若关于x的方程(6-k)(9-k)x2-(117-15k)x+54=0的解都是整数,则符合条件的整数时k的值有    个. 查看答案
根据所给的基本材料,请你进行适当的处理,编写一道综合题.
编写要求:①提出具有综合性、连续性的三个问题;②给出正确的解答过程;③写出编写意图和学生答题情况的预测.
材料①:如图,先把一矩形纸片ABCD对折,得到折痕MN,然后把B点叠在折痕线上,得到△ABE,再过点B把矩形ABCD第三次折叠,使点D落在直线AD上,得到折痕PQ.当沿着BE第四次将该纸片折叠后,点A就会落在EC上.
manfen5.com 满分网
材料②:已知AC是∠MAN的平分线.
(1)在图1中,若∠MAN=120°,∠ABC=ADC=90°,求证:AB+AD=AC;
(2)在图2中,若∠MAN=120°,∠ABC+∠ADC=180°,则(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由;
(3)在图3中:若∠MAN=α(0°<α<180°),∠ABC+∠ADC=180°,
则AB+AD=______AC(用含α的三角函数表示).
manfen5.com 满分网
材料③:
已知:如图甲,在Rt△ACB中,∠C=90°,AC=4cm,BC=3cm,点P由B出发沿线段BA向点A匀速运动,速度为1cm/s;点Q由A出发沿线段AC向点C匀速运动,速度为2cm/s;连接PQ,设运动的时间为t(s)(0<t<2).
manfen5.com 满分网
编写试题选取的材料是______(填写材料的序号)
编写的试题是:(1)设△AQP的面积为y(cm2),求y与t之间的函数关系式.
(2)是否存在某一时刻t,使线段PQ恰好把Rt△ACB的周长和面积同时平分?若存在,求出此时t的值.
(3)如图(2),连接PC,并把△PQC沿QC翻折得到四边形PQP'C.是否存在某一时刻t,使四边形PQP'C为菱形?若存在,求出此时菱形的边长.
试题解答(写出主要步骤即可):(1)过点Q作QD⊥AP于点D,证△AQD∽△ABC,利用相似性质及面积解答;
(2)分别求得Rt△ACB的周长和面积,由周长求出t,代入函数解析式验证;
(3)利用余弦定理得出PC、PQ,联立方程,求得t,再代入PC解得答案.
查看答案
2008年8月,北京奥运会帆船比赛将在青岛国际帆船中心举行.观看帆船比赛的船票分为两种:A种船票600元/张,B种船票120元/张.某旅行社要为一个旅行团代购部分船票,在购票费不超过5000元的情况下,购买A,B两种船票共15张,要求A种船票的数量不少于B种船票数量的一半.若设购买A种船票x张,请你解答下列问题:
(1)共有几种符合题意的购票方案写出解答过程;
(2)根据计算判断:哪种购票方案更省钱?
查看答案
在一个不透明的口袋中装有红、白、黑三种颜色的小球若干个,它们只有颜色不同,其中有白球2个、黑球1个.已知从中任意摸出1个球得白球的概率为manfen5.com 满分网
(1)求口袋里有多少个红球;
(2)求从袋中一次摸出2个球,得一红一白的概率.要求画出树状图.
查看答案
(1)已知△ABC中,∠A=90°,∠B=67.5°,请画一条直线,把这个三角形分割成两个等腰三角形.(请你选用下面给出的备用图,把所有不同的分割方法都画出来.只需画图,不必说明理由,但要在图中标出相等两角的度数)
manfen5.com 满分网
(2)已知△ABC中,∠C是其最小的内角,过顶点B的一条直线把这个三角形分割成了两个等腰三角形,请探求∠ABC与∠C之间的关系.
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.