满分5 > 初中数学试题 >

如图,AB=3AC,BD=3AE,又BD∥AC,点B,A,E在同一条直线上. (...

如图,AB=3AC,BD=3AE,又BD∥AC,点B,A,E在同一条直线上.
(1)求证:△ABD∽△CAE;
(2)如果AC=BD,AD=2manfen5.com 满分网BD,设BD=a,求BC的长.

manfen5.com 满分网
(1)由BD∥AC,得∠EAC=∠B;根据已知条件,易证得AB:AC和BD:AE的值相等,由此可根据SAS判定两个三角形相似. (2)首先根据已知条件表示出AB、AD、AC的值,进而可由勾股定理判定∠D=∠E=90°;根据(1)得出的相似三角形的相似比,可表示出EC、AE的长,进而可在Rt△BEC中,根据勾股定理求出BC的长. (1)证明:∵BD∥AC,点B,A,E在同一条直线上, ∴∠DBA=∠CAE, 又∵==3, ∴△ABD∽△CAE;(4分) (2)【解析】 ∵AB=3AC=3BD,AD=2BD, ∴AD2+BD2=8BD2+BD2=9BD2=AB2, ∴∠D=90°, 由(1)得△ABD∽△CAE ∴∠E=∠D=90°, ∵AE=BD,EC=AD=BD,AB=3BD, ∴在Rt△BCE中,BC2=(AB+AE)2+EC2 =(3BD+BD)2+(BD)2=BD2=12a2, ∴BC=2a.(6分)
复制答案
考点分析:
相关试题推荐
如图,P1是反比例函数y=manfen5.com 满分网(k>0)在第一象限图象上的一点,点A1的坐标为(2,0).
(1)当点P1的横坐标逐渐增大时,△P1OA1的面积将如何变化?
(2)若△P1OA1与△P2A1A2均为等边三角形,求此反比例函数的解析式及A2点的坐标.

manfen5.com 满分网 查看答案
如图,台风中心位于点P,并沿东北方向PQ移动,已知台风移动的速度为40千米/时,受影响区域的半径为260千米,B市位于点P的北偏东75°方向上,距离P点480千米.
(1)说明本次台风是否会影响B市;
(2)若这次台风会影响B市,求B市受台风影响的时间.

manfen5.com 满分网 查看答案
某水果批发商场经销一种高档水果,如果每千克盈利10元,每天可售出500千克.经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克.现该商场要保证每天盈利6 000元,同时又要使顾客得到实惠,那么每千克应涨价多少元?
查看答案
给出下列命题:
命题1:点(1,1)是直线y=x与双曲线y=manfen5.com 满分网的一个交点;
命题2:点(2,4)是直线y=2x与双曲线y=manfen5.com 满分网的一个交点;
命题3:点(3,9)是直线y=3x与双曲线y=manfen5.com 满分网的一个交点;
(1)请观察上面命题,猜想出命题n(n是正整数);
(2)证明你猜想的命题n是正确.
查看答案
已知关于x的方程kx2-2(k+1)x+k-1=0有两个不相等的实数根.
(1)求k的取值范围;
(2)是否存在实数k,使此方程的两个实数根的倒数和等于0?若存在,求出k的值;若不存在,说明理由.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.