已知抛物线y=x
2-4x+1.将此抛物线沿x轴方向向左平移4个单位长度,得到一条新的抛物线.
(1)求平移后的抛物线解析式;
(2)若直线y=m与这两条抛物线有且只有四个交点,求实数m的取值范围;
(3)若将已知的抛物线解析式改为y=ax
2+bx+c(a>0,b<0),并将此抛物线沿x轴方向向左平移-
个单位长度,试探索问题(2).
考点分析:
相关试题推荐
如下图,在矩形ABCD中,AB=12 cm,BC=6 cm.点P沿AB边从点A开始向点B以2 cm/s的速度移动;点Q沿DA边从点D开始向点A以1 cm/s的速度移动.如果P、Q同时出发,用t(s)表示移动的时间(0≤t≤6)那么:
(1)当t为何值时,△QAP为等腰直角三角形?
(2)求四边形QAPC的面积,提出一个与计算结果有关的结论;
(3)当t为何值时,以点Q、A、P为顶点的三角形与△ABC相似?
查看答案
如图所示,已知在△ABC中,∠BAC=90°,AD⊥BC,E是AC的中点,ED交AB延长线于F,求证:
=
.
查看答案
已知关于x的二次函数
与
,这两个二次函数图象中只有一个图象与x轴交于A,B两个不同的点.
(1)试判断哪个二次函数的图象经过A,B两点;
(2)若A点坐标为(-1,0),试求B点坐标.
查看答案
如图,有一条单向行驶(从正中通过)的公路隧道,其横截面的上部BEC是一段抛物线,A与D、B与C分别关于y轴对称,最高点E离路面AD的距离为8m,点B离路面AD的距离为6m,隧道的宽AD为16m
(1)求抛物线的解析式;
(2)现有一大型货运汽车,装载某大型设备后,其宽为4m,车载大型设备的顶部与路面的距离为7m,它能否安全通过这个隧道?请说明理由.
查看答案
如图所示,已知AB为⊙O的直径,CD是弦,且AB⊥CD于点E.连接AC、OC、BC.
(1)求证:∠ACO=∠BCD;
(2)若EB=8cm,CD=24cm,求⊙O的直径.
查看答案