满分5 > 初中数学试题 >

已知m2+2mn=384,3mn+2n2=560,那么2m2+13mn+6n2-...

已知m2+2mn=384,3mn+2n2=560,那么2m2+13mn+6n2-444的值是    
首先把2m2+13mn+6n2变为2m2+4mn+9mn+6n2,然后分组分解因式即可利用已知等式的结论,利用整体代入的方法即可求解. 【解析】 ∵2m2+13mn+6n2-444 =2m2+4mn+9mn+6n2-444 =2(m2+2mn)+3(3mn+2n2) 而m2+2mn=384,3mn+2n2=560, ∴2m2+13mn+6n2-444 =2×384+3×560-444 =2004. 故答案为:2004.
复制答案
考点分析:
相关试题推荐
计算:manfen5.com 满分网的结果为    查看答案
已知a,b,c在数轴上的表示如图所示,则|a|-|b-a|+|a+b|+|c-a|的值为   
manfen5.com 满分网 查看答案
如图,已知抛物线C1:y=a(x+2)2-5的顶点为P,与x轴相交于A、B两点(点A在点B的左边),点B的横坐标是1.
(1)求P点坐标及a的值;
(2)如图(1),抛物线C2与抛物线C1关于x轴对称,将抛物线C2向右平移,平移后的抛物线记为C3,C3的顶点为M,当点P、M关于点B成中心对称时,求C3的解析式;
(3)如图(2),点Q是x轴正半轴上一点,将抛物线C1绕点Q旋转180°后得到抛物线C4.抛物线C4的顶点为N,与x轴相交于E、F两点(点E在点F的左边),当以点P、N、F为顶点的三角形是直角三角形时,求点Q的坐标.
manfen5.com 满分网
查看答案
●探究:
(1)在图中,已知线段AB,CD,其中点分别为E,F.
①若A(-1,0),B(3,0),则E点坐标为______
②若C(-2,2),D(-2,-1),则F点坐标为______
(2)在图中,已知线段AB的端点坐标为A(a,b),B(c,d),求出图中AB中点D的坐标(用含a,b,c,d的代数式表示),并给出求解过程.
●归纳:
无论线段AB处于直角坐标系中的哪个位置,当其端点坐标为A(a,b),B(c,d),AB中点为D(x,y)时,x=______,y=______.(不必证明)
●运用:
在图中,一次函数y=x-2与反比例函数manfen5.com 满分网的图象交点为A,B.
①求出交点A,B的坐标;
②若以A,O,B,P为顶点的四边形是平行四边形,请利用上面的结论求出顶点P的坐标.
manfen5.com 满分网
查看答案
有200名待业人员参加某企业甲、乙、丙三个部门的招聘,到各部门报名的人数百分比见图1,该企业各部门的录取率见图表2.(部门录取率=manfen5.com 满分网×100%)
(1)到乙部门报名的人数有______人,乙部门的录取人数是______人,该企业的录取率为______
(2)如果到甲部门报名的人员中有一些人员改到丙部门报名,在保持各部门录取率不变的情况下,该企业的录取率将恰好增加15%,问有多少人从甲部门改到丙部门报名?

manfen5.com 满分网 查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.