如图1,正方形ABCD的顶点A,B的坐标分别为(0,10),(8,4),顶点C,D在第一象限.点P从点A出发,沿正方形按逆时针方向运动,同时,点Q从点E(4,0)出发,沿x轴正方向以相同速度运动.当点P到达点C时,P,Q两点同时停止运动.设运动时间为t(s).
(1)求正方形ABCD的边长;
(2)当点P在AB边上运动时,△OPQ的面积S(平方单位)与时间t(s)之间的函数图象为抛物线的一部分(如图2所示),求P,Q两点的运动速度;
(3)求(2)中面积S(平方单位)与时间t(s)的函数解析式及面积S取最大值时点P的坐标;
(4)若点P,Q保持(2)中的速度不变,则点P沿着AB边运动时,∠OPQ的大小随着时间t的增大而增大;沿着BC边运动时,∠OPQ的大小随着时间t的增大而减小.当点P沿着这两边运动时,能使∠OPQ=90°吗?若能,直接写出这样的点P的个数;若不能,直接写不能.
查看答案