计算
的结果是( )
A.2
B.±2
C.-2
D.4
考点分析:
相关试题推荐
如图,在平面直角坐标系中,以点C(0,4)为圆心,半径为4的圆交y轴正半轴于点A,AB是⊙C的切线.动点P从点A开始沿AB方向以每秒1个单位长度的速度运动,点Q从O点开始沿x轴正方向以每秒4个单位长度的速度运动,且动点P、Q从点A和点O同时出发,设运动时间为t(秒).
(1)当t=1时,得到P
1、Q
1两点,求经过A、P
1、Q
1三点的抛物线解析式及对称轴l;
(2)当t为何值时,直线PQ与⊙C相切并写出此时点P和点Q的坐标;
(3)在(2)的条件下,抛物线对称轴l上存在一点N,使NP+NQ最小,求出点N的坐标并说明理由.
查看答案
如图已知直线L:y=
x+3,它与x轴、y轴的交点分别为A、B两点.
(1)求点A、点B的坐标.
(2)设F为x轴上一动点,用尺规作图作出⊙P,使⊙P经过点B且与x轴相切于点F(不写作法,保留作图痕迹).
(3)设(2)中所作的⊙P的圆心坐标为P(x,y),求y关于x的函数关系式.
(4)是否存在这样的⊙P,既与x轴相切又与直线L相切于点B?若存在,求出圆心P的坐标;若不存在,请说明理由.
查看答案
数学课上,同学们探究下面命题的正确性:顶角为36°的等腰三角形具有一种特性,即经过它某一顶点的一条直线可把它分成两个小等腰三角形.为此,请你解答问题(1).
(1)已知:如图①,在△ABC中,AB=AC,∠A=36°,直线BD平分∠ABC交AC于点D.求证:△ABD与△DBC都是等腰三角形;
(2)在证明了该命题后,小乔发现:下面两个等腰三角形如图②、③也具有这种特性.请你在图②、图③中分别画出一条直线,把它们分成两个小等腰三角形,并在图中标出所有等腰三角形两个底角的度数;
(3)接着,小乔又发现:其它一些非等腰三角形也具有这样的特性,即过它其中一个顶点画一条直线可以将原三角形分成两个小等腰三角形.请你画出两个不同类型且具有这种特性的三角形的示意图,并在图中标出可能的各内角的度数.(说明:要求画出的两个三角形不相似,且不是等腰三角形.)
(4)请你写出两个符合(3)中一般规律的非等腰三角形的特征.
查看答案
已知二次函数y=x
2-2x-3的图象与x轴交于A、B两点(A在B的左侧),与y轴交于点C,顶点为D.
(1)求点A、B、C、D的坐标,并在下面直角坐标系中画出该二次函数的大致图象;
(2)说出抛物线y=x
2-2x-3可由抛物线y=x
2如何平移得到?
(3)求四边形OCDB的面积.
查看答案
下列图表是某校今年参加中考体育的男生1000米跑、女生800米跑的成绩中分别抽取的10个数据.
考生编号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
男生成绩 | 3′05″ | 3′11″ | 3′53″ | 3′10″ | 3′55″ | 3′30″ | 3′25″ | 3′19″ | 3′27″ | 3′55″ |
(1)求出这10名女生成绩的中位数、众数和极差;
(2)按《云南省中考体育》规定,女生800米跑成绩不超过3′38〞就可以得满分.该校学生有490人,男生比女生少70人.请你根据上面抽样的结果,估算该校考生中有多少名女生该项考试得满分?
(3)若男考生1号和10号同时同地同向围着400米跑道起跑,在1000米的跑步中,他们能否首次相遇?如果能相遇,求出所需时间;如果不能相遇,说明理由.
查看答案