满分5 >
初中数学试题 >
已知m、n是有理数,方程x2+mx+n=0有一个根是,则m+n的值为 .
已知m、n是有理数,方程x
2+mx+n=0有一个根是
,则m+n的值为
.
考点分析:
相关试题推荐
已知x
2-x-1=0,那么代数式x
3-2x+1的值是
.
查看答案
在直角三角形ABC中,两条直角边AB,AC的长分别为1厘米,2厘米,那么直角的角平分线的长度等于
厘米.
查看答案
设m=
+1,那么
的整数部分是
.
查看答案
如图所示,在平面直角坐标系xOy中,正方形OABC的边长为2cm,点A、C分别在y轴的负半轴和x轴的正半轴上,抛物线y=ax
2+bx+c经过点A、B,且12a+5c=0.
(1)求抛物线的解析式;
(2)如果点P由点A开始沿AB边以2cm/s的速度向点B移动,同时点Q由点B开始沿BC边以1cm/s的速度向点C移动.
①移动开始后第t秒时,设S=PQ
2(cm
2),试写出S与t之间的函数关系式,并写出t的取值范围;
②当S取得最小值时,在抛物线上是否存在点R,使得以P、B、Q、R为顶点的四边形是平行四边形?如果存在,求出R点的坐标;如果不存在,请说明理由.
查看答案
如图(1),在地面A、B两处测得地面上标杆PQ的仰角分别为30°、45°,且测得AB=3米,求标杆PQ的长
(2)在数学学习中要注意基本模型的应用,如图(2),是测量不可达物体高度的基本模型:在地面A、B两处测得地面上标杆PQ的仰角分别为α、β,且测得AB=a米.
设PQ=h米,由PA-PB=a可得关于h的方程______,解得h=
(3)请用上述基本模型解决下列问题:如图3,斜坡AP的倾斜角为15°,在A处测得Q的仰角为45°,要测量斜坡上标杆PQ的高度,沿着斜坡向上走10米到达B,在B处测得Q的仰角为60°,求标杆PQ的高.(结果可含三角函数)
查看答案