满分5 > 初中数学试题 >

某市政府大力扶持大学生创业,李明在政府的扶持下投资销售一种进价为每件20元的护眼...

某市政府大力扶持大学生创业,李明在政府的扶持下投资销售一种进价为每件20元的护眼台灯.销售过程中发现,每月销售量y(件)与销售单价x(元)之间的关系可近似的看作一次函数:y=-10x+500.
(1)设李明每月获得利润为w(元),当销售单价定为多少元时,每月可获得最大利润?
(2)如果李明想要每月获得2000元的利润,那么销售单价应定为多少元?
(3)根据物价部门规定,这种护眼台灯的销售单价不得高于32元,如果李明想要每月获得的利润不低于2000元,那么他每月的成本最少需要多少元?
(成本=进价×销售量)
(1)由题意得,每月销售量与销售单价之间的关系可近似看作一次函数,利润=(定价-进价)×销售量,从而列出关系式;(2)令w=2000,然后解一元二次方程,从而求出销售单价;(3)根据抛物线的性质和图象,求出每月的成本. 【解析】 (1)由题意,得:w=(x-20)×y, =(x-20)•(-10x+500)=-10x2+700x-10000, , 答:当销售单价定为35元时,每月可获得最大利润. (2)由题意,得:-10x2+700x-10000=2000, 解这个方程得:x1=30,x2=40, 答:李明想要每月获得2000元的利润,销售单价应定为30元或40元. (3)∵a=-10<0, ∴抛物线开口向下, ∴当30≤x≤40时,w≥2000, ∵x≤32, ∴当30≤x≤32时,w≥2000, 设成本为P(元),由题意,得:P=20(-10x+500)=-200x+10000, ∵a=-200<0, ∴P随x的增大而减小, ∴当x=32时,P最小=3600, 答:想要每月获得的利润不低于2000元,每月的成本最少为3600元.
复制答案
考点分析:
相关试题推荐
Rt△ABC与Rt△FED是两块全等的含30°、60°角的三角板,按如图(一)所示拼在一起,CB与DE重合.
(1)求证:四边形ABFC为平行四边形;
(2)取BC中点O,将△ABC绕点O顺时钟方向旋转到如图(二)中△A′B′C′位置,直线B'C'与AB、CF分别相交于P、Q两点,猜想OQ、OP长度的大小关系,并证明你的猜想;
(3)在(2)的条件下,指出当旋转角至少为多少度时,四边形PCQB为菱形?(不要求证明)
manfen5.com 满分网
查看答案
在一组数据x1,x2,…,xn中,各数据与它们的平均数manfen5.com 满分网的差的绝对值的平均数,即manfen5.com 满分网叫做这组数据的“平均差”.“平均差”也能描述一组数据的离散程度.“平均差”越大说明数据的离散程度越大.因为“平均差”的计算要比方差的计算要容易一点,所以有时人们也用它来代替方差来比较数据的离散程度.极差、方差(标准差)、平均差都是反映数据离散程度的量.
一水产养殖户李大爷要了解鱼塘中鱼的重量的离散程度,因为个头大小差异太大会出现“大鱼吃小鱼”的情况;为防止出现“大鱼吃小鱼”的情况,在能反映数据离散程度几个的量中某些值超标时就要捕捞;分开养殖或出售;他从两个鱼塘各随机捕捞10条鱼称得重量如下:(单位:千克)
A鱼塘:3、5、5、5、7、7、5、5、5、3
B鱼塘:4、4、5、6、6、5、6、6、4、4
(1)分别计算甲、乙两个鱼塘中抽取的样本的极差、方差、平均差;完成下面的表格:
极差方差平均差
A鱼塘
B鱼塘
(2)如果你是技术人员,你会建议李大爷注意哪个鱼塘的风险更大些?计算哪些量更能说明鱼重量的离散程度?
查看答案
如图,扇形OAB的半径OA=r,圆心角∠AOB=90°,点C是manfen5.com 满分网上异于A、B的动点,过点C作CD⊥OA于点D,作CE⊥OB于点E,点M在DE上,DM=2EM,过点C的直线CP交OA的延长线于点P,且∠CPO=∠CDE.
(1)试说明:DM=manfen5.com 满分网r;
(2)试说明:直线CP是扇形OAB所在圆的切线.

manfen5.com 满分网 查看答案
已知:如图,在正方形ABCD中,点E、F分别在BC和CD上,AE=AF.
(1)求证:BE=DF;
(2)连接AC交EF于点O,延长OC至点M,使OM=OA,连接EM,FM,判断四边形AEMF是什么特殊四边形?并证明你的结论.

manfen5.com 满分网 查看答案
已知二次函数y=x2+bx+c的顶点在直线y=-4x上,并且图象经过点(-1,0)
(1)求这个二次函数的解析式.
(2)当x满足什么条件时二次函数y=x2+bx+c随x的增大而减小?
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.