满分5 > 初中数学试题 >

已知关于x的方程x2-(k+2)x+2k=0. (1)求证:无论k取任意实数值,...

已知关于x的方程x2-(k+2)x+2k=0.
(1)求证:无论k取任意实数值,方程总有实数根.
(2)若等腰三角形ABC的一边a=1,另两边长b、c恰是这个方程的两个根,求△ABC的周长.
(1)把一元二次方程根的判别式转化成完全平方式的形式,得出△≥0可知方程总有实数根. (2)根据等腰三角形的性质分情况讨论求出b,c的长,并根据三角形三边关系检验,综合后求出△ABC的周长. 证明:(1)∵△=b2-4ac=(k+2)2-8k=(k-2)2≥0, ∴无论k取任意实数值,方程总有实数根. 【解析】 (2)分两种情况: ①若b=c, ∵方程x2-(k+2)x+2k=0有两个相等的实数根, ∴△=b2-4ac=(k-2)2=0, 解得k=2, ∴此时方程为x2-4x+4=0,解得x1=x2=2, ∴△ABC的周长为5; ②若b≠c,则b=a=1或c=a=1,即方程有一根为1, ∵把x=1代入方程x2-(k+2)x+2k=0,得1-(k+2)+2k=0, 解得k=1, ∴此时方程为x2-3x+2=0, 解得x1=1,x2=2, ∴方程另一根为2, ∵1、1、2不能构成三角形, ∴所求△ABC的周长为5. 综上所述,所求△ABC的周长为5.
复制答案
考点分析:
相关试题推荐
已知,⊙O1与⊙O2外切,⊙O1的半径R=2,设⊙O2的半径为r,
(1)如果⊙O1与⊙O2的圆心距d=4,求r的值;
(2)如果⊙O1与⊙O2的公切线中有两条互相垂直,并且r≤R,求r的值.
查看答案
已知一个三角形纸片ABC,面积为25,BC的长为10,∠B、∠C都为锐角,M为AB边上的一动点(M与A、B不重合),过点M作MN∥BC交AC于点N,设MN=x.
(1)用x表示△AMN的面积;
(2)△AMN沿MN折叠,使△AMN紧贴四边形BCNM(边AM、AN落在四边形BCNM所在的平面内),设点A落在平面BCNM内的点A′,△A′MN与四边形BCNM重叠部分的面积为y.
①用含x的代数式表示y,并写出x的取值范围.
②当x为何值时,重叠部分的面积y最大,最大为多少?

manfen5.com 满分网 查看答案
试确定一切有理数r,使得关于x的方程rx2+(r+2)x+r-1=0有根且只有整数根.
查看答案
如图,在直角梯形ABCD中,AB=7,AD=2,BC=3,若在线段AB上取一点P,使得以P、A、D为顶点的三角形和以P、B、C为顶点的三角形相似,则这样的P点有( )
manfen5.com 满分网
A.1个
B.2个
C.3个
D.4个
查看答案
点A(-4,0),B(2,0)是xOy平面上两定点,C是y=manfen5.com 满分网x+2的图象上的动点,则满足上述条件的直角三角形ABC可以画出( )
A.1个
B.2个
C.3个
D.4个
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.