满分5 > 初中数学试题 >

如图,在△ABC中,AB=AC,AD⊥BC,CG∥AB,BG分别交AD,AC于E...

如图,在△ABC中,AB=AC,AD⊥BC,CG∥AB,BG分别交AD,AC于E,F.若manfen5.com 满分网=manfen5.com 满分网,那么manfen5.com 满分网等于   
manfen5.com 满分网
利用等腰三角形的性质及CG∥AB,可推出△GEC∽△CEF,从而推出=. 【解析】 连接CE, ∵AB=AC,AD⊥BC ∴BE=CE,∠ABE=∠ACE ∵CG∥AB ∴∠ABE=∠G ∴∠ACE=∠G ∴△GEC∽△CEF ∴ ∴ ∵= ∴=.
复制答案
考点分析:
相关试题推荐
已知a﹑b为正整数,a=b-2005,若关于x方程x2-ax+b=0有正整数解,则a的最小值是    查看答案
如图,已知圆心为A,B,C的三个圆彼此相切,且均与直线l相切.若⊙A,⊙B,⊙C的半径分别为a,b,c(0<c<a<b),则a,b,c一定满足的关系式为( )
manfen5.com 满分网
A.2b=a+c
B.manfen5.com 满分网=manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
查看答案
一名模型赛车手遥控一辆赛车,先前进1m,然后,原地逆时针方向旋转角a(0°<α<180°)被称为一次操作.若五次操作后,发现赛车回到出发点,则角α为( )
A.72°
B.108°或144°
C.144°
D.72°或144°
查看答案
已知一组正数x1,x2,x3,x4,x5的方差为:S2=manfen5.com 满分网(x12+x22+x32+x42+x52-20),则关于数据x1+2,x2+2,x3+2,x4+2,x5+2的说法:①方差为S2;②平均数为2;③平均数为4;④方差为4S2.其中正确的说法是( )
A.①②
B.①③
C.②④
D.③④
查看答案
方程|xy|+|x+y|=1的整数解的组数为( )
A.8
B.6
C.4
D.2
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.