满分5 > 初中数学试题 >

已知抛物线y=ax2+bx+c与y轴交于点A(0,3),与x轴分别交于B(1,0...

已知抛物线y=ax2+bx+c与y轴交于点A(0,3),与x轴分别交于B(1,0)、C(5,0)两点.
(1)求此抛物线的解析式;
(2)若点D为线段OA的一个三等分点,求直线DC的解析式;
(3)若一个动点P自OA的中点M出发,先到达x轴上的某点(设为点E),再到达抛物线的对称轴上某点(设为点F),最后运动到点A′求使点P运动的总路径最短的点E、点F的坐标,并求出这个最短总路径的长.
(1)由于A、B、C三点的坐标已知,代入函数解析式中利用待定系数法就可以确定函数的解析式; (2)若点D为线段OA的一个三等分点,那么根据已知条件可以确定D的坐标为(0,1)或,(0,2),而C的坐标已知,利用待定系数法就可以确定直线CD的解析式; (3)如图,由题意,可得M(0,),点M关于x轴的对称点为M′(0,-),点A关于抛物线对称轴x=3的对称点为A'(6,3),连接A'M',根据轴对称性及两点间线段最短可知,A'M'的长就是所求点P运动的最短总路径的长,根据待定系数法可求出直线A'M'的解析式为y=x-,从而求出E、F两点的坐标,再根据勾股定理可以求出A'M'=,也就求出了最短总路径的长. 【解析】 (1)根据题意,c=3, 所以 解得 所以抛物线解析式为y=x2-x+3. (2)依题意可得OA的三等分点分别为(0,1),(0,2). 设直线CD的解析式为y=kx+b. 当点D的坐标为(0,1)时,直线CD的解析式为y=-x+1;(3分) 当点D的坐标为(0,2)时,直线CD的解析式为y=-x+2.(4分) (3)如图,由题意,可得M(0,). 点M关于x轴的对称 点为M′(0,-), 点A关于抛物线对称轴x=3的对称点为A'(6,3). 连接A'M'. 根据轴对称性及两点间线段最短可知,A'M'的长就是所求点P运动的最短总路径的长.(5分) 所以A'M'与x轴的交点为所求E点,与直线x=3的交点为所求F点. 可求得直线A'M'的解析式为y=x-. 可得E点坐标为(2,0),F点坐标为(3,).(7分) 由勾股定理可求出. 所以点P运动的最短总路径(ME+EF+FA)的长为.(8分)
复制答案
考点分析:
相关试题推荐
阅读下列材料:
一般地,n个相同的因数a相乘manfen5.com 满分网记为an,记为an.如2×2×2=23=8,此时,3叫做以2为底8的对数,记为log28(即log28=3).一般地,若an=b(a>0且a≠1,b>0),则n叫做以a为底b的对数,记为logab(即logab=n).如34=81,则4叫做以3为底81的对数,记为log381(即log381=4).
(1)计算以下各对数的值:
log24=______,log216=______,log264=______
(2)观察(1)中三数4、16、64之间满足怎样的关系式,log24、log216、log264之间又满足怎样的关系式;
(3)由(2)的结果,你能归纳出一个一般性的结论吗?
logaM+logaN=______;(a>0且a≠1,M>0,N>0)
(4)根据幂的运算法则:an•am=an+m以及对数的含义证明上述结论.
查看答案
我市某镇组织20辆汽车装运完A、B、C三种脐橙共100吨到外地销售.按计划,20辆汽车都要装运,每辆汽车只能装运同一种脐橙,且必须装满.根据下表提供的信息,解答以下问题:
脐  橙  品  种ABC
每辆汽车运载量(吨)654
每吨脐橙获得(百元)121610
(1)设装运A种脐橙的车辆数为x,装运B种脐橙的车辆数为y,求y与x之间的函数关系式;
(2)如果装运每种脐橙的车辆数都不少于4辆,那么车辆的安排方案有几种?并写出每种安排方案;
(3)若要使此次销售获利最大,应采用哪种安排方案?并求出最大利润的值.
查看答案
已知抛物线y=4x2-11x-3.
(Ⅰ)求它的对称轴;
(Ⅱ)求它与x轴、y轴的交点坐标.
查看答案
符号“f”表示一种运算,它对一些数的运算结果如下:
(1)f(1)=0,f(2)=1,f(3)=2,f(4)=3,…
(2)manfen5.com 满分网
利用以上规律计算:manfen5.com 满分网=    查看答案
直线y=2x+6与两坐标轴围成的三角形面积是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.