满分5 > 初中数学试题 >

如图,△ABC中,点P是边AC上的一个动点,过P作直线MN∥BC,设MN交∠BC...

如图,△ABC中,点P是边AC上的一个动点,过P作直线MN∥BC,设MN交∠BCA的平分线于点E,交∠BCA的外角平分线于点F.
(1)求证:PE=PF;
(2)当点P在边AC上运动时,四边形AECF可能是矩形吗?说明理由;
(3)若在AC边上存在点P,使四边形AECF是正方形,且manfen5.com 满分网.求此时∠BAC的大小.

manfen5.com 满分网
(1)可证明PE=PC,PF=PC,从而得到PE=PF; (2)由一对邻补角的平分线互相垂直,得出∠ECF=90°,故要使四边形AECF是矩形,只需四边形AECF是平行四边形即可.由(1)知PE=PF,则点P运动到AC边中点时,四边形AECF是矩形. (3)由正方形的对角线相等且互相垂直,可知AC⊥EF,AC=2AP.又EF∥BC,得出AC⊥BC,在直角△ABC中,根据锐角三角函数的定义及特殊角的三角函数值求出∠A的大小. (1)证明:∵CE平分∠BCA, ∴∠BCE=∠ECP, 又∵MN∥BC, ∴∠BCE=∠CEP, ∴∠ECP=∠CEP, ∴PE=PC; 同理PF=PC, ∴PE=PF; (2)【解析】 当点P运动到AC边中点时,四边形AECF是矩形.理由如下: 由(1)可知PE=PF, ∵P是AC中点, ∴AP=PC, ∴四边形AECF是平行四边形. ∵CE、CF分别平分∠BCA、∠ACD, 且∠BCA+∠ACD=180°, ∴∠ECF=∠ECP+∠PCF=(∠BCA+∠ACD)=×180°=90°, ∴平行四边形AECF是矩形; (3)【解析】 若四边形AECF是正方形,则AC⊥EF,AC=2AP. ∵EF∥BC, ∴AC⊥BC, ∴△ABC是直角三角形,且∠ACB=90°, ∴tan∠BAC===, ∴∠BAC=30°.
复制答案
考点分析:
相关试题推荐
如图,分别以Rt△ABC的直角边AC及斜边AB向外作等边△ACD,等边△ABE.已知∠BAC=30°,EF⊥AB,垂足为F,连接DF.
(1)试说明AC=EF;
(2)求证:四边形ADFE是平行四边形.

manfen5.com 满分网 查看答案
已知二次函数y=-x2+bx+c的图象如图所示,它与x轴的一个交点坐标为(-1,0),与y轴的交点坐标为(0,3).
(1)求出b,c的值,并写出此二次函数的解析式;
(2)根据图象,写出函数值y为正数时,自变量x的取值范围.

manfen5.com 满分网 查看答案
先化简,再求值manfen5.com 满分网,其中x=manfen5.com 满分网
查看答案
根据如图所示的计算程序,若输入的值x=-1,则输出的值y=   
manfen5.com 满分网 查看答案
古希腊数学家把数1,3,6,10,15,21…叫做三角形数,它有一定的规律性,若把第一个三角形数记为a1,第二个三角形数记为a2,…,第n个三角形数记为an,计算a2-a1,a3-a2,a4-a3,…,由此推算,a100-a99=    ,a100=    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.