小刚上午7:30从家里出发步行上学,途经少年宫时走了1200步,用时10分钟,到达学校的时间是7:55、为了估测路程等有关数据,小刚特意在学校的田径跑道上,按上学的步行速度,走完100米用了150步.
(1)小刚上学步行的平均速度是多少米/分?小刚家和少年宫之间,少年宫和学校之间的路程分别是多少米?
(2)下午4:00,小刚从学校出发,以45米/分的速度行走,按上学时的原路回家,在未到少年宫300米处与同伴玩了半小时后,赶紧以110米/分的速度回家,中途没有再停留,问:
①小刚到家的时间是下午几时?
②小刚回家过程中,离家的路程s(米)与时间t(分)之间的函数关系如图,请写出点B的坐标,并求出线段CD所在直线的函数解析式.
考点分析:
相关试题推荐
如图,方格纸中每个小正方形的边长为1,△ABC和△DEF的顶点都在方格纸的格点上.
(1)判断△ABC和△DEF是否相似,并说明理由;
(2)P
1,P
2,P
3,P
4,P
5,D,F是△DEF边上的7个格点,请在这7个格点中选取3个点作为三角形的顶点,使构成的三角形与△ABC相似(要求写出2个符合条件的三角形,并在图中连接相应线段,不必说明理由)
查看答案
一次函数y=kx+b的图象与x、y轴分别交于点A(2,0),B(0,4).
(1)求该函数的解析式;
(2)O为坐标原点,设OA、AB的中点分别为C、D,P为OB上一动点,求PC+PD的最小值,并求取得最小值时P点的坐标.
查看答案
如图,抛物线y=ax
2+c(a<0)交x轴于点G,F,交y轴于点D,在x轴上方的抛物线上有两点B,E,它们关于y轴对称,点G,B在y轴左侧,BA⊥OG于点A,BC⊥OD于点C,四边形OABC与四边形ODEF的面积分别为6和10,则△ABG与△BCD的面积之和为
.
查看答案