(1)欲求∠ABD,已知了同弧所对的圆周角∠ACB的度数,根据同弧所对的圆周角相等即可得解;
(2)由于∠CEB是△ACE的外角,已知∠ACD的度数,欲求∠CEB,需先求出∠CAB的度数;可连接BC,由圆周角定理知∠ACB是直角,则∠A和∠CBA(即∠ADC)互余,由此得解.
【解析】
(1)∵∠ABD、∠ACD是同弧所对的圆周角,
∴∠ABD=∠ACD=60°;
(2)连接BC,则∠ACB=90°;
∵∠CBA=∠ADC=50°,
∴∠CAB=90°-∠CBA=40°;
∴∠CEB=∠CAB+∠ACD=60°+40°=100°.