如图所示,对称轴为x=3的抛物线y=ax
2+2x与x轴相交于点B,O.
(1)求抛物线的解析式,并求出顶点A的坐标;
(2)连接AB,把AB所在的直线平移,使它经过原点O,得到直线l.点P是l上一动点.设以点A、B、O、P为顶点的四边形面积为S,点P的横坐标为t,当0<S≤18时,求t的取值范围;
(3)在(2)的条件下,当t取最大值时,抛物线上是否存在点Q,使△OPQ为直角三角形且OP为直角边?若存在,直接写出点Q的坐标;若不存在,说明理由.
考点分析:
相关试题推荐
每个小方格都是边长为1个单位长度的小正方形,菱形OABC在平面直角坐标系中的位置如图.
(1)将菱形OABC先向右平移4个单位,再向上平移2个单位,得到菱形OA
1B
1C
1,请画出菱形OA
1B
1C
1,并直接写出点B
1的坐标;
(2)将菱形OABC绕原点O顺时针旋转90°,得到菱形OA
2B
2C
2,请画出菱形OA
2B
2C
2,并求出点B旋转到B
2的路径长.
查看答案
解不等式组
,并写出该不等式组的整数解.
查看答案
如图,已知点B、E、C、F在同一直线上,AB=DE,∠A=∠D,AC∥DF.
求证:(1)△ABC≌△DEF;
(2)BE=CF.
查看答案
先化简,再求值:(
-
)÷
,其中x=
+1.
查看答案