满分5 > 初中数学试题 >

已知抛物线y=x2+(1-2a)x+a2(a≠0)与x轴交于两点A(x1,0)、...

已知抛物线y=x2+(1-2a)x+a2(a≠0)与x轴交于两点A(x1,0)、B(x2,0)(x1≠x2).
(1)求a的取值范围,并证明A、B两点都在原点O的左侧;
(2)若抛物线与y轴交于点C,且OA+OB=OC-2,求a的值.
(1)首先令抛物线的值y=0,可得出一个关于x的方程,那么x1•x2=a2>0,因此x1、x2同号,然后可根据抛物线与x轴有两个坐标不同的交点即方程的△>0以及x1+x2的值来得出点A、B均在原点O左侧. (2)可先根据一元二次方程根与系数的关系用a表示出OA、OB的长,然后用a表示出OC的长,然后根据题中给出的等量关系:OA+OB=OC-2求出a的值. 【解析】 (1)∵抛物线与x轴交于A(x1,0),B(x2,0)两点,且x1≠x2, ∴△=(1-2a)2-4a2>0.a<. 又∵a≠0, ∴x1•x2=a2>0, 即x1、x2必同号. 而x1+x2=-(1-2a)=2a-1<-1=-<0, ∴x1、x2必同为负数, ∴点A(x1,0),B(x2,0)都在原点的左侧. (2)∵x1、x2同为负数, ∴由OA+OB=OC-2, 得-x1-x2=a2-2 ∴1-2a=a2-2, ∴a2+2a-3=0. ∴a1=1,a2=-3, ∵a<,且a≠0, ∴a的值为-3.
复制答案
考点分析:
相关试题推荐
在一个不透明的口袋里装有红、黄、蓝三种颜色的小球若干个(除颜色外其余都相同),其中红球2个,蓝球1个.若从中任意摸出一个球,它是蓝球的概率为manfen5.com 满分网
(1)求袋中黄球的个数;
(2)第一次任意摸出一个球(不放回),第二次再摸出一个球,求两次摸到球的颜色是红色与黄色这种组合(不考虑红、黄球顺序)的概率.
查看答案
如图,已知AB是⊙O的直径,直线CD经过⊙O上一点C,AD⊥DC,AC平分∠DAB.
(1)求证:直线CD为⊙O的切线;
(2)若AD=2,AC=manfen5.com 满分网,求AB的长.

manfen5.com 满分网 查看答案
二次函数图象过A、B、C三点,点A(-l,0),B(3,0),点C在y轴负半轴上,且OB=OC.
(1)求这个二次函数的解析式:
(2)将该二次函数图象向右平移几个单位,可使平移后所得图象过点(1,5),并求出平移后图象与y轴的交点坐标.

manfen5.com 满分网 查看答案
某居民小区一处圆柱形的输水管道破裂,维修人员为更换管道,需确定管道圆形截面的半径,下图是水平放置的破裂管道有水部分的截面.
(1)请你补全这个输水管道的圆形截面;
(2)若这个输水管道有水部分的水面宽AB=16cm,水面最深地方的高度为4cm,求这个圆形截面的半径.

manfen5.com 满分网 查看答案
一直线y1=x+b与抛物线y2=x2+c的交点为A(3,5)和B.
(1)求出b、c和点B的坐标;
(2)画出草图,根据图象同答:当x在什么范围时y1≤y2

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.