满分5 > 初中数学试题 >

如图,AB是半圆O的直径,过点O作弦AD的垂线交半圆O于点E,交AC于点C,使∠...

如图,AB是半圆O的直径,过点O作弦AD的垂线交半圆O于点E,交AC于点C,使∠BED=∠C.
(1)判断直线AC与圆O的位置关系,并证明你的结论;
(2)若AC=8,manfen5.com 满分网,求AD的长.

manfen5.com 满分网
(1)由于OC⊥AD,那么∠OAD+∠AOC=90°,又∠BED=∠BAD,且∠BED=∠C,于是∠OAD=∠C,从而有∠C+∠AOC=90°,再利用三角形内角和定理,可求∠OAC=90°,即AC是⊙O的切线; (2)连接BD,AB是直径,那么∠ADB=90°,在Rt△AOC中,由于AC=8,∠C=∠BED,cos∠BED=,利用三角函数值,可求OA=6,即AB=12,在Rt△ABD中,由于AB=12,∠OAD=∠BED,cos∠BED=,同样利用三角函数值,可求AD. 【解析】 (1)AC与⊙O相切. 证明:∵弧BD是∠BED与∠BAD所对的弧, ∴∠BAD=∠BED, ∵OC⊥AD, ∴∠AOC+∠BAD=90°, ∴∠BED+∠AOC=90°, 即∠C+∠AOC=90°, ∴∠OAC=90°, ∴AB⊥AC,即AC与⊙O相切; (2)【解析】 连接BD. ∵AB是⊙O直径, ∴∠ADB=90°, 在Rt△AOC中,∠CAO=90°, ∵AC=8,∠ADB=90°,, ∴AO=6, ∴AB=12, 在Rt△ABD中,∵cos∠OAD=cos∠BED=, ∴AD=AB•cos∠OAD=12×=.
复制答案
考点分析:
相关试题推荐
某公司投资新建了一商场,共有商铺40间.据预测,当每间的年租金定为10万元时,可全部租出,每间的年租金每增加4000元,少租出商铺l间.该公司要为租出的商铺每间每年交各种费用1万元,未租出的商铺每间每年交各种费用 4000元.
(1)当每间商铺的年租金定为14万元时,能租出多少间?
(2)当每间商铺的年租金定为多少万元时,该公司的年收益(收益=租金-各种费用)为383万元?
查看答案
如图,在Rt△ABC中,∠ACB=90°,AC=5,CB=12,AD是△ABC的角平分线,过A、C、D三点的圆O与斜边AB交于点E,连接DE.
(1)求证:AC=AE;
(2)求AD的长.

manfen5.com 满分网 查看答案
如图所示,A、B两城市相距100km,现计划在这两座城市间修建一条高速公路(即线段AB),经测量,森林保护中心P在A城市的北偏东30°和B城市的北偏西45°的方向上,已知森林保护区的范围在以P点为圆心,50km为半径的圆形区域内,请问计划修建的这条高速公路会不会穿越保护区,为什么?(参考数据:manfen5.com 满分网≈1.732,manfen5.com 满分网≈1.414)

manfen5.com 满分网 查看答案
已知:如图,抛物线y=ax2+bx+c与x轴相交于两点A(1,0),B(3,0),与y轴相交于点C(0,3).
(1)求抛物线的函数关系式;
(2)若点D(manfen5.com 满分网,m)是抛物线y=ax2+bx+c上的一点,请求出m的值,并求出此时△ABD的面积.

manfen5.com 满分网 查看答案
如图,AB,AC分别是⊙O的直径和弦,OD⊥AC于点D,连接BD、BC,AB=5,AC=4,
求:BD的长.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.