满分5 > 初中数学试题 >

如图,已知抛物线y=-x2+x+4交x轴的正半轴于点A,交y轴于点B. (1)求...

如图,已知抛物线y=-manfen5.com 满分网x2+x+4交x轴的正半轴于点A,交y轴于点B.
(1)求A、B两点的坐标,并求直线AB的解析式;
(2)设P(x,y)(x>0)是直线y=x上的一点,Q是OP的中点(O是原点),以PQ为对角线作正方形PEQF,若正方形PEQF与直线AB有公共点,求x的取值范围;
(3)在(2)的条件下,记正方形PEQF与△OAB公共部分的面积为S,求S关于x的函数解析式,并探究S的最大值.

manfen5.com 满分网
(1)抛物线的解析式中,令x=0可求出B点的坐标,令y=0可求出A点的坐标,然后用待定系数法即可求出直线AB的解析式; (2)可分别求出当点P、点Q在直线AB上时x的值,即可得到所求的x的取值范围; (3)此题首先要计算出一个关键点:即直线AB过E、F时x的值(由于直线AB与直线OP垂直,所以直线AB同时经过E、F),此时点E的坐标为(x,),代入直线AB的解析式即可得到x=; ①当2≤x<时,直线AB与PE、PF相交,设交点为C、D;那么重合部分的面积为正方形QEPF和等腰Rt△PDC的面积差,由此可得到关于S、x的函数关系式,进而可根据函数的性质及自变量的取值范围求出S的最大值及对应的x的值; ②当≤x≤4时,直线AB与QE、QF相交,设交点为M、N;此时重合部分的面积为等腰Rt△QMN的面积,可参照①的方法求出此时S的最大值及对应的x的值; 综合上述两种情况,即可比较得出S的最大值及对应的x的值. 【解析】 (1)令y=0, 得-x2+x+4=0,即x2-2x-8=0; 解得x=-2,x=4; 所以A(4,0); 令x=0,得y=4, 所以B(0,4); 设直线AB的解析式为y=kx+b, 则有:, 解得,故此直线的解析式为:y=-x+4; (2)当P(x,y)在直线AB上时,x=-x+4,解得x=2; 当Q(,)在直线AB上时,=-+4,解得x=4; 所以正方形PEQF与直线AB有公共点,且2≤x≤4; (3)当点E(x,)在直线AB上时, (此时点F也在直线AB上)=-x+4,解得x=; ①当2≤x<时,直线AB分别与PE、PF有交点, 设交点分别为C、D; 此时PC=x-(-x+4)=2x-4,又PD=PC, 所以S△PCD=PC2=2(x-2)2; S=S正方形PEQF-S△PCD=QE2-S△PCD=(x-)2-S△PCD 从而S=x2-2(x-2)2=-x2+8x-8=-(x-)2+; 因为2≤<, 所以当x=时,Smax=; ②当≤x≤4时,直线AB分别与QE、QF有交点,设交点分别为M、N; 此时QN=(-+4)-=-x+4,又QM=QN, 所以S△QMN=QN2=(x-4)2, 即S=(x-4)2; 当x=时,Smax=; 综合①②得:当x=时,Smax=.
复制答案
考点分析:
相关试题推荐
如图,AB是半圆O的直径,过点O作弦AD的垂线交半圆O于点E,交AC于点C,使∠BED=∠C.
(1)判断直线AC与圆O的位置关系,并证明你的结论;
(2)若AC=8,manfen5.com 满分网,求AD的长.

manfen5.com 满分网 查看答案
某公司投资新建了一商场,共有商铺40间.据预测,当每间的年租金定为10万元时,可全部租出,每间的年租金每增加4000元,少租出商铺l间.该公司要为租出的商铺每间每年交各种费用1万元,未租出的商铺每间每年交各种费用 4000元.
(1)当每间商铺的年租金定为14万元时,能租出多少间?
(2)当每间商铺的年租金定为多少万元时,该公司的年收益(收益=租金-各种费用)为383万元?
查看答案
如图,在Rt△ABC中,∠ACB=90°,AC=5,CB=12,AD是△ABC的角平分线,过A、C、D三点的圆O与斜边AB交于点E,连接DE.
(1)求证:AC=AE;
(2)求AD的长.

manfen5.com 满分网 查看答案
如图所示,A、B两城市相距100km,现计划在这两座城市间修建一条高速公路(即线段AB),经测量,森林保护中心P在A城市的北偏东30°和B城市的北偏西45°的方向上,已知森林保护区的范围在以P点为圆心,50km为半径的圆形区域内,请问计划修建的这条高速公路会不会穿越保护区,为什么?(参考数据:manfen5.com 满分网≈1.732,manfen5.com 满分网≈1.414)

manfen5.com 满分网 查看答案
已知:如图,抛物线y=ax2+bx+c与x轴相交于两点A(1,0),B(3,0),与y轴相交于点C(0,3).
(1)求抛物线的函数关系式;
(2)若点D(manfen5.com 满分网,m)是抛物线y=ax2+bx+c上的一点,请求出m的值,并求出此时△ABD的面积.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.